asda?‰PNG  IHDR ? f ??C1 sRGB ??é gAMA ±? üa pHYs ? ??o¨d GIDATx^íüL”÷e÷Y?a?("Bh?_ò???¢§?q5k?*:t0A-o??¥]VkJ¢M??f?±8\k2íll£1]q?ù???T /* Dwarfless register access for powerpc */ @__private30 global _reg_offsets[44] probe init { /* Same order as pt_regs */ _reg_offsets["r0"] = 0 _reg_offsets["r1"] = 8 _reg_offsets["r2"] = 16 _reg_offsets["r3"] = 24 _reg_offsets["r4"] = 32 _reg_offsets["r5"] = 40 _reg_offsets["r6"] = 48 _reg_offsets["r7"] = 56 _reg_offsets["r8"] = 64 _reg_offsets["r9"] = 72 _reg_offsets["r10"] = 80 _reg_offsets["r11"] = 88 _reg_offsets["r12"] = 96 _reg_offsets["r13"] = 104 _reg_offsets["r14"] = 112 _reg_offsets["r15"] = 120 _reg_offsets["r16"] = 128 _reg_offsets["r17"] = 136 _reg_offsets["r18"] = 144 _reg_offsets["r19"] = 152 _reg_offsets["r20"] = 160 _reg_offsets["r21"] = 168 _reg_offsets["r22"] = 176 _reg_offsets["r23"] = 184 _reg_offsets["r24"] = 192 _reg_offsets["r25"] = 200 _reg_offsets["r26"] = 208 _reg_offsets["r27"] = 216 _reg_offsets["r28"] = 224 _reg_offsets["r29"] = 232 _reg_offsets["r30"] = 240 _reg_offsets["r31"] = 248 _reg_offsets["nip"] = 256 _reg_offsets["msr"] = 264 _reg_offsets["orig_gpr3"] = 272 _reg_offsets["ctr"] = 280 _reg_offsets["link"] = 288 _reg_offsets["xer"] = 296 _reg_offsets["ccr"] = 304 _reg_offsets["softe"] = 312 _reg_offsets["trap"] = 320 _reg_offsets["dar"] = 328 _reg_offsets["dsisr"] = 336 _reg_offsets["result"] = 344 /* * If we ever need to support 32bit powerpc, we can * get to the register offsets by using just a * reg32_offset = _reg_offsets["reg"]/2 * or somesuch */ } function probing_32bit_app:long() %{ /* pure */ STAP_RETVALUE = (CONTEXT->user_mode_p && _stp_is_compat_task()); %} function arch_bytes:long() %{ /* pure */ STAP_RETVALUE = sizeof(long); %} function uarch_bytes:long() { assert(user_mode(), "requires user mode") return probing_32bit_app() ? 4 : 8 } function _stp_get_register_by_offset:long (offset:long) %{ /* pure */ long value; struct pt_regs *regs; regs = (CONTEXT->user_mode_p ? CONTEXT->uregs : CONTEXT->kregs); if (!regs) { CONTEXT->last_error = "No registers available in this context"; return; } if (STAP_ARG_offset < 0 || STAP_ARG_offset > sizeof(struct pt_regs) - sizeof(long)) { snprintf(CONTEXT->error_buffer, sizeof(CONTEXT->error_buffer), "Bad register offset: %lld", (long long)STAP_ARG_offset); CONTEXT->last_error = CONTEXT->error_buffer; return; } memcpy(&value, ((char *)regs) + STAP_ARG_offset, sizeof(value)); STAP_RETVALUE = value; %} function _stp_sign_extend32:long (value:long) { if (value & 0x80000000) value |= (0xffffffff << 32) return value } function _stp_register:long (name:string, sign_extend:long) { assert(registers_valid(), "cannot access CPU registers in this context") offset = _reg_offsets[name] assert(offset != 0 || (name in _reg_offsets), "Unknown register: " . name) value = _stp_get_register_by_offset(offset) if (probing_32bit_app()) { if (sign_extend) value = _stp_sign_extend32(value) else value &= 0xffffffff } return value } /* Return the named register value as a signed value. */ function register:long (name:string) { return _stp_register(name, 1) } /* * Return the named register value as an unsigned value. Specifically, * don't sign-extend the register value when promoting it to 64 bits. */ function u_register:long (name:string) { return _stp_register(name, 0) } /* * Return the value of function arg #argnum (1=first arg). * If truncate=1, mask off the top 32 bits. * If sign_extend=1 and (truncate=1 or the probepoint we've hit is in a * 32-bit app), sign-extend the 32-bit value. * If force64=1, return a 64-bit value even if we're in a 32-bit app. */ function _stp_arg:long (argnum:long, sign_extend:long, truncate:long) { return _stp_arg2(argnum, sign_extend, truncate, 0) } function _stp_arg2:long (argnum:long, sign_extend:long, truncate:long, force64:long) { val = 0 assert(!(argnum < 1 || argnum > 8), sprintf("Cannot access arg(%d)", argnum)) if (argnum == 1) val = u_register("r3") else if (argnum == 2) val = u_register("r4") else if (argnum == 3) val = u_register("r5") else if (argnum == 4) val = u_register("r6") else if (argnum == 5) val = u_register("r7") else if (argnum == 6) val = u_register("r8") else if (argnum == 7) val = u_register("r9") else if (argnum == 8) val = u_register("r10") if ((truncate || @__compat_task) && !force64) { if (sign_extend) val = _stp_sign_extend32(val) else /* High bits may be garbage. */ val = (val & 0xffffffff); } return val; } /* Return the value of function arg #argnum (1=first arg) as a signed int. */ function int_arg:long (argnum:long) { return _stp_arg2(argnum, 1, 1, 0) } /* Return the value of function arg #argnum (1=first arg) as an unsigned int. */ function uint_arg:long (argnum:long) { return _stp_arg2(argnum, 0, 1, 0) } function long_arg:long (argnum:long) { return _stp_arg2(argnum, 1, 0, 0) } function ulong_arg:long (argnum:long) { return _stp_arg2(argnum, 0, 0, 0) } function longlong_arg:long (argnum:long) { if (probing_32bit_app()) { highbits = _stp_arg2(argnum, 0, 1, 0) lowbits = _stp_arg2(argnum+1, 0, 1, 0) return ((highbits << 32) | lowbits) } else return _stp_arg2(argnum, 0, 0, 1) } function ulonglong_arg:long (argnum:long) { return longlong_arg(argnum) } function pointer_arg:long (argnum:long) { return _stp_arg2(argnum, 0, 0, 0) } function s32_arg:long (argnum:long) { return int_arg(argnum) } function u32_arg:long (argnum:long) { return uint_arg(argnum) } function s64_arg:long (argnum:long) { return longlong_arg(argnum) } function u64_arg:long (argnum:long) { return ulonglong_arg(argnum) } function asmlinkage() %{ /* pure */ %} function fastcall() %{ /* pure */ %} function regparm(n:long) %{ snprintf(CONTEXT->error_buffer, sizeof(CONTEXT->error_buffer), "regparm is invalid on powerpc."); CONTEXT->last_error = CONTEXT->error_buffer; %}