asda?‰PNG  IHDR ? f ??C1 sRGB ??é gAMA ±? üa pHYs ? ??o¨d GIDATx^íüL”÷e÷Y?a?("Bh?_ò???¢§?q5k?*:t0A-o??¥]VkJ¢M??f?±8\k2íll£1]q?ù???T ELF>@@8 @ "",- жж"ж"888$$ȫȫȫ Stdȫȫȫ Ptdiiid d QtdRtd""H H GNU9l0 ŞM)O`@ BE|qXG~wu  f   I   ~ 'p 9D   \ f xA Vt M0 ^]D8Y   4 !   R: $  I mp w $>  0Zt   9 %   # : o[ Tk   B  ` o4 }!  O    *  Ce W Y N( x C] J c 5[ `  g, v R{ @  MPF"  H)5A- e X" `" X"  __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibmpdec.so.3libpthread.so.0libc.so.6_Py_NoneStructPyObject_CallObjectPyExc_ValueErrorPyErr_SetStringPyExc_KeyError_PyObject_New__stack_chk_failPyUnicode_FromFormatmpd_getclampPyLong_FromSsize_tPyLong_FromLongmpd_getroundmpd_geteminmpd_getemaxmpd_getprecmpd_delmpd_set_flagsmpd_setdigitsmpd_iszerompd_issnan_Py_TrueStruct_Py_FalseStructmpd_issignedmpd_etopmpd_etinympd_lsnprint_signalsmpd_round_stringPyExc_RuntimeErrormpd_isdynamic_datampd_isspecialmpd_adjexpmpd_maxcontextmpd_qnewmpd_qsset_ssizempd_qpowmodmpd_qcopympd_set_positivempd_qmulmpd_qremmpd_qget_ssizempd_ispositivempd_isnan_Py_HashPointermpd_arith_signPyExc_TypeErrorPyErr_NoMemoryPyObject_Free_Py_Deallocmpd_qcopy_negatempd_qcopy_absmpd_qncopympd_signPyLong_FromUnsignedLongmpd_isinfinitempd_isqnanPyUnicode_FromStringPyTuple_NewPyObject_CallFunctionObjArgsmpd_clear_flagsmpd_to_scimpd_freePy_BuildValuePyLong_AsSsize_tPyErr_OccurredPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyContextVar_SetPyType_IsSubtypePyContextVar_GetPyArg_ParseTupleAndKeywordsmpd_to_eng_sizePyUnicode_Newmemcpympd_classmpd_issubnormalmpd_isnormalPyDict_NewPyDict_SetItemPyList_NewPyList_AppendPyErr_SetObjectmpd_qfinalizempd_qlogbmpd_qinvertmpd_qreducempd_qnext_plusmpd_qnext_minusmpd_qlog10mpd_qlnmpd_qexpmpd_qplusmpd_qsetprecPyUnicode_Comparempd_qround_to_intxmpd_qsetroundmpd_qseteminmpd_qsetemaxmpd_qsetclampPyObject_IsTruePyDict_SizePyDict_GetItemWithError_Py_NotImplementedStructPyErr_Clearmpd_qsettrapsmpd_qsetstatusmpd_isfinitempd_iscanonicalPyObject_GenericSetAttrPyExc_AttributeErrorPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharstrcmpPyErr_FormatPyTuple_Typempd_to_sci_sizePyTuple_SizePyLong_AsLongPyMem_Mallocsnprintf__snprintf_chk__strcat_chkPyList_AsTuplePyMem_Freempd_qimport_u32mpd_seterrorPyArg_ParseTuplempd_qshiftmpd_qscalebmpd_qrotatempd_qcopy_signmpd_qdivmodmpd_qminmpd_qmax_magmpd_qmaxmpd_qround_to_intmpd_qminusmpd_qabsmpd_qxormpd_qormpd_qandmpd_same_quantummpd_compare_total_magmpd_compare_totalmpd_qfmampd_qrem_nearmpd_qnext_towardmpd_qmin_magmpd_qcompare_signalmpd_qcomparempd_qdivintPyList_SizePyList_GetItemmpd_qset_stringPyFloat_FromStringmpd_isnegativePyFloat_AsDoublePyComplex_FromDoublesmpd_qexport_u32_PyLong_NewPyExc_OverflowErrormpd_qquantize_PyLong_GCDPyTuple_Packmpd_qdivmpd_qaddmpd_qsqrtmpd_qsubPyUnicode_AsUTF8AndSizempd_parse_fmt_strstrlenmpd_qformat_specPyUnicode_DecodeUTF8mpd_validate_lconvPyObject_CallOneArgPyObject_CallMethodPyErr_ExceptionMatches_PyImport_GetModuleAttrStringPyFloat_Typempd_qset_uintmpd_qset_ssizempd_qpowmpd_set_signmpd_setspecialmpd_qcmpPyBool_FromLongPyComplex_TypePyObject_IsInstancePyObject_GetAttrStringPyComplex_AsCComplexPyFloat_FromDouble_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPyInit__decimalmpd_reallocfuncPyMem_Reallocmpd_traphandlermpd_mallocfuncmpd_callocfunc_emmpd_callocfuncmpd_setminallocPyLong_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectRefPyExc_ArithmeticErrorPyErr_NewExceptionPyExc_ZeroDivisionErrorPyContextVar_NewPyModule_AddObjectPyUnicode_InternFromStringPyModule_AddStringConstantmpd_versionPyModule_AddIntConstantPyObject_HashNotImplementedPyType_GenericNew_edata__bss_start_endGLIBC_2.14GLIBC_2.4GLIBC_2.2.5GLIBC_2.3.4s ii ui ti "p"0ȶ"ȶ"")"@"H"P"``".h"pp""3"P""8"0""="""F""("O0"8""U""_" "h"0"m"p`"P,h"Bp"x" "P""G"""@"`"`H"P"!"r""I"v"`" I"y"0"`H"""G""д"F "("8" E@"H"pX"`D`"h"px"C""p"A"""A"""@"""?"4"p"> "("8"@>@"9H"0X"=`"h"x"=""";"""8""p" 6""P"@5""" "4 "/("`8"4@"9H"X"3`"Eh"x"3"L""2"T"`"@2"\""1"f"`" 1"n"" 0 "x(" 8"@/@"H"X".`"%h"x".""@"-""Ч"-"""@,""@"+""@"@* "("p8")@"H"@X"`&`"h"x"$""" """"" "" """"0" "%("8"@"0H"X"`"<h"`x""C"""J" ""Z"m""P""@"""  "Y("P@"bH"P`"Dh"O"o" "z""""""" "("P@"H"Щ""`"`f"r"p" f"v""e"y""e"""e "("8"d@"H" X"@d`"h"x"c""`"`c"""c"""b"""@b"" A"a "("M8"a@"H"%X"`a`"h"Ђx"a"""`""K"``"""`"4""_""`"@_ "9("8"^@"H"X"^`"h" *x"@^""0"]"">"]""."\""Y" \""E"[ "("8"@Y@"H"@X"Y`"h"x"@X"""W""0"@W"""p"V"/"0"V"9"" V "E("8"U@"nH"pX"`U`"Lh"x"U"\""T"T"P"@T"x""S"f""S""@ "%("8"@S@"H"X"R`" h" x"R""`"@R""@"Q""p"Q"""@Q""@"P "(" \8"P@"H" (X" P`"h"Ix"O""@"`O""" O"%""N"0" "N"<""@N " ("W8"M@"CH"X"M`"Jh"Px" M"$""L"0""L"Y"0"o"")"0"@L "<("0|8"K@"KH"PX"J"e""@h"p""g"{"P1"f"" "0""C"h""""8""8""80"8"8P"X"8p"x"8""8""8"""8""8 "("8@"H"8`"h"8""8""8""8""8""8 "("8@"rH"=P"8`" h"Hp""."="8"3"F"O"*"6""."="8"3"F"O"* "60"=8"8P"=X"8p"x"8"8"8"8"8"8"8"8"8"8 "("@"H" `"-h"%"H"@"b"Z"8"8"8"8 " ("0"8"@"H"P"X"`"h"p"x"""""""""""" "("@"H"`"h"""" ""8"P"@""""""""h""8"qP"x""`"""0" "g""""X"n""@"P"@X"p""""`""@"""""" ".("60"A8"F@"KH"LP"RX"l`"rh"sp"ux"x"~""""""""ȿ"п"ؿ"""""X"Gp"}"}"}"H`"U"U""""""" "(" 0" 8" @" H" P"X"`"h"p"x"""""""""" ȹ"!й""ع"#"$"%"&"'"(")"*"+ ",("-0"/8"0@"1H"2P"3X"4`"5h"7p"8x"9":";"<"=">"?"@"B"CȺ"Dк"Eغ"I"J"M"N"O"P"Q"S"T "U("V0"W8"X@"YH"ZP"[X"\`"]h"^p"_x"`"a"b"c"d"e"f"g"h"iȻ"jл"kػ"m"n"o"p"q"t"v"w"y "z("{0"|8"}@"H"P"X"`"h"p"x""""""""""ȼ"м"ؼ""""""""" "("0"8"@"H"P"X"`"h"p"x""""""""""Ƚ"н"ؽ""""""""" "("0"8"@"H"P"X"`"h"p"x""""""""""Ⱦ"о"ؾ""""HHG"HtH52A"%3A"hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!h]h^h_h`hahbhchdhehfhgqhhahiQhjAhk1hl!hmhnhohphqhrhshthuhvhwqhxahyQhzAh{1h|!h}h~hhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhhhhhhhhqhahQhAh1h!hhhhh% 5"D%5"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%4"D%}4"D%u4"D%m4"D%e4"D%]4"D%U4"D%M4"D%E4"D%=4"D%54"D%-4"D%%4"D%4"D%4"D% 4"D%4"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%3"D%}3"D%u3"D%m3"D%e3"D%]3"D%U3"D%M3"D%E3"D%=3"D%53"D%-3"D%%3"D%3"D%3"D% 3"D%3"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%2"D%}2"D%u2"D%m2"D%e2"D%]2"D%U2"D%M2"D%E2"D%=2"D%52"D%-2"D%%2"D%2"D%2"D% 2"D%2"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%1"D%}1"D%u1"D%m1"D%e1"D%]1"D%U1"D%M1"D%E1"D%=1"D%51"D%-1"D%%1"D%1"D%1"D% 1"D%1"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%0"D%}0"D%u0"D%m0"D%e0"D%]0"D%U0"D%M0"D%E0"D%=0"D%50"D%-0"D%%0"D%0"D%0"D% 0"D%0"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%/"D%}/"D%u/"D%m/"D%e/"D%]/"D%U/"D%M/"D%E/"D%=/"D%5/"D%-/"D%%/"D%/"D%/"D% /"D%/"D1HK"H5mH mH8t%DID@LEHxH H|PL HPH=u1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$"HpHH g."H5uH9@1LJ."H5{uI8#17h3t(r3LG3L ."H5uI9E33H{HHtH/!444H+t$14H+HCHuH14H1v4H+uHc~1H+uHId1CXE16KHImtJE1I.5L5LHmuHMu5HImu6LE1HE17sLHuE1r5oH‰H77H+t1H1e+#8Ht,"H5ZjH8=1`81Y8HHD$"HD$ 818H HT$RH{HH{H1HT$*H$cHH$RHH$H$HH$H$Hmt1H,"H1ewH q+"H5sH9JW9`M9L3@9I,$59L(9H+t1 H+uH1H1HHHH H"H5#HO$Hr%Hmt1&HgT&H1X&HD$)Ht$H‰HV9H{K91>9L/*"H5hs1I8Q'HT$&HHT$&HD$Ht$H‰Hh;H{];1P;HD$Ht$HH;;'1|(H)"l(H)"`(H v)"H5osH9O(H X)"H5ysH91 )H)"HJ)[]A\HtHHu>H>IEH I$1t>1l)H("H5Qs1H8O)H("HH5sH811)HHD${HD$>l?2u$H("H5efH8H1>1>H;#M">H;M"t>H;L"g>H{>1?1?Imt^1ALHD$I.HD$ALHD$HD$AI.uLImuL1AL1A1[BH{HBH{HB1=BH[hB1)HHD$BHD$)H'"H)H 9'"H52rH9CHHHHHHY1H+UH1%lUH|$H/wU SUH+3VH1 VH|$H/VUH+VH1VH|$H/VVH|$H/1j1H+z1H1vQ1l12H]HL$1Np2H|$H/t,H|$H/2*n2tHL$1 H, "H5Eh1H872133H|$H/t>H|$H/33HHL$2mtHL$2H"H5g1H8pT3f14HWHL$)4H4H|$H/t,H|$H/4$4tHL$3H&"H5?g1H8q4tHL$Q5H|$H/t`15H"H5f1H855H|$H/t3H|$H/u5HtHL$4e15YR16HCHL$E646H|$H/t,H|$H/66tHL$6H"H5+f1H8618HHL$b77H|$H/t,H|$H/87StHL$!7pH"H5e1H8V7t[HL$8HD$4HD$8H"H8H|$(H/ 918HHL$18H"H5'eH818tHL$Y9HHL$G9H"H5d1H89Hm9H1y9o9H|$H/t%H|$H/9K9A1y95tHL$ D:H|$H/t`1:H/"H5Hd1H8::H|$H/t3H|$H/ux:HHL$ 91Z:mtHL$ ;H|$H/t`1y;H"H5c1H8e\;[G;H|$H/t3H|$H/u;2;H.HL$ :1;H|$ H/<1<&=HL$;H|$ H/t$H|$H/t H|$H/<k<&<HHL$_;1>HuHL$W=f=H|$H/t,H|$H/ >B=tHL$=%HD"H5]b1H8 =HHL$>Hmt1?H1?tHL$P>>H"H5a1H8>H|$H/t,H|$H/u>H|$H/um1>aZ1 @HKHL$M?fHH|$H/t5H|$H/t11HHmuH1 GHNGGH"H5ZaH80QL"H5_I:QH "H5`H9P1W1VHs WI/YL\YrY1 XL>oYH=J"H5\H?#TYH{H "H<$15[H{HZ1 [H[H1[H{H\1\H{H{\H^I,$t"Imt%1v^1o^Lb^L{L1oI^Lb`Im`LJ`1`LO"H5[I8(q`>g`H1]HHD$HD$9bHHD$HD$H8HIbu$H"H5PH81a1aH;7"aH;|7"aH;g7"aHaE1bLcdL 7"H|$AHb]dLI"H5ZI;"d8HE1bImjdL]dLCC|bLMub1eHHD$HD$eH1[HHD$HD$zEH1[HHD$HD$EHHD$jHD$e1fHQ1HT$HH5 P;gH|$HVg|fIII,$tG1>jLI11jIILiI,$t1iLkE1L1kLhLMIiH+tI,$t1ciHL1xJiLkkH+t {1+i1$iHEkH8H+t1lH!lH1l1lHD$Ld$ pHHD$pL"H5O]I;1oL"H5*XI8;u1uIm&uLu1DuL|uLoyrHbrImtI,$t1WrL@L6H+uH&HmtE1vHE1 vH+tHmtE1xHHH+uHHmy{Hl{H|L}IHmtImtE1|E1|HuLE1h||I,$t%E1~H+t'HmuHE1<~LE1,~HHt$fH>FH|$HH>H|$HD$bL "H5UZI8_L靀L% "H5XI<$6L "H5YI9H+uHvHmuHgE1H+t1H1HHmuH12H%IH+uHImt4E1E1鹑ImuLE1频LԑLE1酑I,$t%E1H+t'HmuHE1ړLE1ʓHHmt1HhH1Y͕1ƕH+tHmtE1H0H&I,$t%E1H+t'HmuHE1ʘLE1麘HHmuHI,$uL1'H|$Hu#Ll$(Mu ENE1頡E1>17L1E1f 1E1 H\hr1E1I,$t%E1髦H+t'HmuHE1!鎦LE1~HH{H雨1駨H{H醨L颯I,$ٰL̰LE1鯫LE1韫I.t5E1鑫lHD$HAI.uLE1idLE1YTLLImt[E13HImuLL+ "H5|RI;ʮH= "H5WRH?ݯLЯI,$LvH "H5WH;I/uLH,$LeLd$ILeHd1ڲLUXI.t=H|$I.tSL)鬵LL-LL钸HHT$HT$71t{~LL$HT$LL$HT$LL$HT$O0LL$HT$IAEIM9t3B_uLd$,LLT$,A]IH *"9wHl$0tBHcULLTxFH=E1H+t11Hs;H11HQ:1E1o11E1cHl8H_8LR8E14@KL3NH&PHSjH71E1LE1^=H6H6H6HmtRH+tVE1E1HmtE1E11MHV5HIE1E1xE1E1mH)Hf.HG1ÐH}!G,HfS1HH=!"HtSPHxHs @0PP[H"HH9u7Ht(HHHfo :@0fH@HH@@ H0H10Huf.HHoHHcHcPHHH#"HHHHfHHHHSHHHH3HHHHSHH?HCH[H@ff.AWAVAUATUSHHodH%(H$1Ht.H$dH3 %(HH[]A\A]A^A_ffoȦfo IHfoH$HHH$H$D$ H$L$(D$8HT$HH$D$PL$XD$hH\$xHDŽ$ Ƅ$$$H$D$H<$YL$LIHHHIt$ Ll$HLLHeLT$ H$HLMMLLT$H4$LHpHCHLLHfowHIXLIL$M)$HT$LMHHHLAH<$IuIދD$IttLLHMt$HLLHnLT$ Ht$PH<$uXH<$t6LHIl$HLYHQH<$LcIi/H!H5,BH:Tff.fSHHHtH/t)H{Ht H/@H[=ff.fH{HtH/H[ff.@SHH@HH/H{HHt H/uHCH[H@H%"SH9vHHH="1|HC@HH="1aHCHHzL "MAo@HS@Hs,CAoH K AoP0LC(S0LBHpCPHCXH[10HHH={"1HC@HH=`"1HCHHH5m"Ht7H{H LK@LS(L[,MQLXCPHCXnH{H5ơ ff.fAWAVAUATIUHoSHHOHHHHIHoRH0H菽H=6H0<HDIMH{s1HH>H=a"E1LHL1HIIm HHm9I.HL[]A\A]A^A_HCHH製IH1LHHLaLHHMA70HcyHHEIEGA0IcQHHE IEOA0Ic)HHE(It~EWA0IcHgHE0ItZE_A0IcHCHE8It6A?H|$0Hc贿HH|$HDHI9uH="E1LHL1HIsH|!LImLI|$ IH=}3IH|1H=e31 HH(0ff.fUHHSQHHmHw ]P1Z[]H !H5=H8ܼUHSHHHFt&H58H4t@H58H!tHHH[]ܿff.HEHHH[]ÐHE@HH[]ÐSHHH~H5"H9H9"tWH9"tNH9"tEHH="HH+HH(uHHb!HH[H1HH@,렐HH=}"1dH%(HD$1HkH$HtHL$dH3 %(u H fG( w,€u1!AUH="ATUSQH?_,LoM1IHH= " "dH= " ".H=""H="tp"RH="tZ" H="tD#"H=%"t.H-" H H}t]tHuL޼yH="tH-"]u7H H}uLL)I,$Z[]A\A]H HuL|yH5 "LdOyH5 "LH]H5 "L,AH5 "H%H5 "L H5 "Lػff.SHHHHHH{ft1H[H!H5d9H8ĸff.@AUATUSHHG H5"HH9"H;="%H;="(H;="+H;="%H;="H;=z"H9=u"RŅH5)"H߽4H5"H߽ttH5"H߽t\H5"H߽tDAL-"KtHDǼt#IIuH!H5;8H:pH[]A\A]1ff.ff빽벽뫽뤽ff.fSHHHܸHHtH{:t 1H[HD$褺Ht$Ht׉H!H5(8H8蠶ff.SHHHlHHH{覽t1H[Hs!H57H8Dff.@SHHH HH_HH9wH{t1H[þH{ʻ1uH=!H57H?輵USHHHH= "HH;5" "H= "H95' " H=! "eH;5, "H=& "JH;51 "H=+ "/H;56 "H=0 "H;5; "H=5 "H;5@ "H! "tH H8H;puff.XuCH荹x7HU u^ 1H[]ÐHi " "tff.fH"H "1!ˉfDH) "d@H9 "TL!H5)I8^HT$HT$fH=!H5 *H?躳*fHH菳uH!HHH$!Hff.ATUSHtRHFIHH0H5h/HʷtRH5I/H跷t0HHL[]A\鱹H!H5s5H:[]A\[HL]A\[HL]A\EDAUIATIUHHSHHθHHHH'H+HzH肱HHHjIEH I$1H[]A\A]ff.@UHH5 "SHH_H{H9H;"tfH;"t]H;"tTHH="HݲH+[HH(uuH̰H=M!H?JHEHH[]H1HHU@,H=`"HpH+H,H(uH_H=!H?HEH@HHGHH="H;5"H="H;5"H="hH;5" H="MH;5"H="2H;5"H="H;5"H="H;5"H"tH H:H;ruJ>u6H!HHff.f"HwtH!HHH"H"H"t@H"d@H"TH=!H5%HD$H?良HD$MH|$EH|$Qff.HtHF!H= "HPHV!H5%H:'1ZAVAUATUHSHDg,1HH="It:Hu" H H;t$DctHsLtH H;u1De(藫IHH=#"t?H"H H;t$DctHsLH H;u܋}8DEPAVHcU4H!AUHuLMWH=$APH 1HULE ױIMH HqIuHI.t H[]A\A]A^fDAT1UHSHH= "dH%(HD$1ILH$HH++SPHuLOHHHL$$袵HH@ H Ͻ@H{0L賰H !H<$HL$dH3 %(Hu H[]A\赬0HHtH(SPHuL误HHdHL$$HHt#@ H 3@"H{0LH p!H<$_DAVAUATUSHF HH5i "HH9H;^ "PH;Y "SH;T "&H;O "IH;J "H;E "DH;@ "?HAąH5"HH5"HH5"HҰH5"H軰AL5"K4HE藰tCIIuHz!H5 ,H:C4ff.Af.H}D褲1[]A\A]A^ÐAAAAE1AAff.AWAVAUATUSHHdH%(HD$1jHH{HGfH_HHk(D$HM-T$HHE1IHCHk HuH?HEH轰HXIHαIHغHHL$H1H= ٩HH9ѺI\MH}LWAE\fHLH 0H{IH} HWP%H H 0H{CIH}(HOHɹH 0H{CIlH}0LGA蠬HH L0H{CI)H}8Hw^HDH  0H{CIH}@HGtKAHH 0J<;BD;M9J|ILOAuL%!H5+I<$賧|$u0H|$u&EH{MHL#1蠤Hm Ht$dH34%(LH[]A\A]A^A_HH5BH軫tRH5H訫ADžH5#H莫ADžOH|$H5`E1躣H|$H5>E1蜣A茪HE16 HxHHH-!H5)E1H}`HSH|$H5E1HmLE1$E1HH wIM9:J|L_AuL!H5(E1I;詥?L!H5.)E1I8若!L !H5P)I9pH=!H5E1H?RAVAUATUSHPdH%(HD$H1HFD$ Ll$HHIL腪H!H9HHHf@0HpHL`foyP H@X0IVHp@H8HA~H@01Lt$ HxHLHC L LLL蛦T$ A AAD U,m(DT$ D?Ht$HdH34%(HHP[]A\A]A^1HIvMLLD$APA@莪XZT$ A郵HڹHuENHC0LLKHHC L(HT$ LL踥fDHCHL1HC0ƤHC LeH10HHgf@0HHHL`fo „@ H@H0IVHH@Ht/10D!H ^!H9[i8LqM1莟IHH=!-!9H=!-!H=!-!YH=!ts-!'H=!t]-!H=!tG-!H=!t1L%! I I<$tAl$tIt$L耤y%H=o!L%h!tAl$u>I I<$uLLɠImH+nD*H It$Ly鹲H5!LB靲H5`!H遲H5!LģeH5!L訣IH5L!L茣-H5!LpZsff.AWAVAUL-!ATUSHHBL9u"HAHHD[]A\A]A^A_HALHIHAąuQHStLHLE1HHEAEt4H=3!HRH5($1H?|H]AHiH !HHMUf.USHHH5H8dH%(HD$(1HL$HT$ D$肤HT$ Ht$HٿHT$Ht$HٿH=E!HH7HD$Ht$H}HKLD$HPHv谤H|$H/t5H|$H/tOt$HucH\$(dH3%(HuKH8[]軝H|$H/tt$HTt锰薝1H|$H/u耝1'kfUSHHH5lH8dH%(HD$(1HL$HT$ D$2HT$ Ht$HٿsHT$Ht$HٿTH=!@HH,HD$Ht$H}HKLD$HPHv蠠H|$H/t5H|$H/tOt$H>ucH\$(dH3%(HuKH8[]kH|$H/tt$Ht鉯F1H|$H/u01ל`fUSHHH5H8dH%(HD$(1HL$HT$ D$HT$ Ht$Hٿ#HT$Ht$HٿH=!HH!HD$Ht$H}HKLD$HPHv蠡H|$H/t5H|$H/tOt$HucH\$(dH3%(HuKH8[]H|$H/tt$Ht~1H|$H/u1臛UfUHHH5SH8dH%(HD$(1HL$HT$ D$蒠HT$ Ht$HHT$Ht$Ht|H=Y!HHHD$Ht$H{HL$HPHvhH|$H/tMH|$H/tIt$HڭHH\$(dH3%(u)H8[]H|$H/uę1軙贙]ff.fUHHHSH(dH%(HD$1Ht$D$ thH=k!HHtHD$H{HL$ HUHp询H|$H/t.t$ Hu=HL$dH3 %(Hu%H([]1t$ Ht臙fUHHHSH(dH%(HD$1Ht$D$ thH=!HH֬HD$H{HL$ HUHp_H|$H/t.t$ Hu=HL$dH3 %(Hu%H([]1!t$ HtO跘EfUSHHH5H8dH%(HD$(1HL$HT$ D$HT$ Ht$HٿHT$Ht$HٿH=!HHJHD$Ht$H}HKLD$HPHvH|$H/t5H|$H/tOt$HucH\$(dH3%(HuKH8[]H|$H/tt$Ht駬֖1H|$H/u1g~fUSHHH5H8dH%(HD$(1HL$HT$ D$rHT$ Ht$HٿHT$Ht$HٿH=5!HH?HD$Ht$H}HKLD$HPHv谕H|$H/t5H|$H/tOt$H~ucH\$(dH3%(HuKH8[]諕H|$H/tt$HDt霫膕1H|$H/up1sfUSHHH5\ H8dH%(HD$(1HL$HT$ D$"HT$ Ht$HٿcHT$Ht$HٿDH=!0HH4HD$Ht$H}HKLD$HPHv蠖H|$H/t5H|$H/tOt$H.ucH\$(dH3%(HuKH8[][H|$H/tt$Ht鑪61H|$H/u 1ǔhfUHHHSH(dH%(HD$1Ht$D$ 6thH=!&HHHD$H{HL$ HUHpOH|$H/t.t$ H8u=HL$dH3 %(Hu%H([]1at$ HtfUHHHSH(dH%(HD$1Ht$D$ fthH= !VHHʪHD$H{HL$ HUHp诘H|$H/t.t$ Hhu=HL$dH3 %(Hu%H([]1葒t$ H5tC'9fUHHHSH(dH%(HD$1Ht$D$ thH=;!HH,HD$H{HL$ HUHpߓH|$H/t.t$ Hu=HL$dH3 %(Hu%H([]1t$ Het饩W雩fUHHHSH(dH%(HD$1Ht$D$ thH=k!HHHD$H{HL$ HUHp/H|$H/t.t$ Hu=HL$dH3 %(Hu%H([]1t$ Ht臑fAWAVAUATUSHHH;!H=!H9!H=!sH9!H=!XH;!H=!=H;!H=!"H;!H=!H9!H=!t!H H?H;Guff.fGA IL;|$ALT$DMzLKH9RL]AHDIHRE11HH訔I>H;O!1H=I!sH;T!6H=N!XH;Y!KH=S!=H9^!@H=X!"H9c!UH=]!H9h!ZH=b!H9m!HN!tH H:H;BuBHA L9AH|$DHd1HT$xdH3%(\HĈ[]A\A]A^A_@H!H=!@H!d@H=!@H=!@H!4@H!$@H=!@H=!@H!@H=!@H!I9H|$ H9t(茌H=L\$HI{Lt$I9t%LWHHLl$AEPHD$H9tCH(HHH9LD$MpLI9tDIt$LNHD$HLd$Mt$1L謈H9H]\HL5 !IHHl$L}1L,wff.@AL\$MsE1HT$ALrAAALl$AMuAAL轊HLT$HIzL=!H5 I?蔈ff.A%HD$(KHt$(H+Lt$I~ύI9IUH56!I9L;-.!L;-)!L;-$!L;-!L;-!t\L;-!t{L;-!t^LA…lA[膋HuoHHL$E1Lq4H|$ALw LL$AMq Ht$ALvLa!H5I;2ՆL|$MwL!!H5I8PH|$LM!6諊HuL ߾!H5I9谆胊HhLL$HMqyH=!H5"H?r5(#0HHH|$HAAO>ff.UH1SHH=!dH%(HD$1HBnH5'!H'n H5!HnHAL=!K4HDmIIuL ˠ!H5\1I9hff.fff.Lo{H=i!dnHHyLPH@0fIuLP@HxHL$ Lfo%IH@@ `0 ft$ H|$譬HL$XdH3 %(HHh[]A\A]A^A_ýf.LFoNďf1)ffDffD녾Ld$ H\$H LHH9LCA[H5!H9UH;!XH;!kH;!nH;!kH;!oH;!'H;!T HxH5+!H97=m_H!H51H8MfSH+oH14e:ZHD$HMH(eAVAUIATI1USH H=!dH%(HD$1HT$D$ /hhHl$HHm4IEH!H9I|$IEH9gI$}kHHHsHC0fHMfo GHs@IT$IuC H{LD$ HCK0dIm`I,$H}(D$ E,KHt$dH34%(HH []A\A]A^HHmH(HIEH!H9ff.H5!HQkIU8LHH=k!IHI|$H9u0I$H=D!?jHHff.H5!juIL$LHH=!蜾IHuDff.@LbLb!L -!I9Ai%MqM1Z`IHH=f!-j!H=l!-p!H=r!tu-z!NH=|!t_-!H=!tI-!H=!t3-!`H=!tL%!Al$I I<$uH=S!tL%J!Al$usI I<$uLLaImH+H1^ahI aHT!HImD鹊H9!H/It$LdxcIt$Ld;IIEH5c!Ld#H5'!LgdH5!LKdiH5!H/d3ωH53!Ld鳉H5!LcW闉DAUIHH5,ATUSH(dH%(HD$1HL$HT$D$eljH\$L%!HCL9Hl$HH}H9HE IHmIMHUHsI|$LD$aH+ Hmt$LHL$dH3 %(LH([]A\A]LHg(HSHLLɺHHHl$H}L9u"HEH=!>IH1陈H5ָ!fuHutiHLH=!^HHuH+mHE1^Ht^Hg^I,$8LE1L^H=h!HV1H5[H?Kf^H E!HR1E1H55H9%fHӇfAUIHH5ATUSH(dH%(HD$1HL$HT$cH\$L%!HCL9utHl$HH}H9HEٗIHfHUHsI}_H+HmHL$dH3 %(LH([]A\A]LHd HSHLL賸HHHl$H}L9u"HEH=ݶ!(IHO鰆H5!{duHutSHLH=!HHHuH+|HE1k\H^\HQ\\H=h!HV1H5[H?KdH J!HR1E1H5:H9*dHAUIHH5ATUSH(dH%(HD$1HL$HT$D$aZH\$L%!HCL9Hl$HH}H9HE͕IHIMHUHsI|$LD$cH+Hmt$LՠHL$dH3 %(LH([]A\A]LHbHSHLL艶HHtuHl$H}L9u"HEH=!IH5鳄H5!UbuHut`HLH=w!"HHuH+uHLZE1'HHQr@AUIHH5,ATUSH(dH%(HD$1HL$HT$D$LrH\$L%!HCL9Hl$HH}H9HE IHrIMHUHsI|$LD$KH+ Hmt$LHL$dH3 %(LH([]A\A]LHN(HSHLLɡHHHl$H}L9u"HEH=!>IH1IqH5֟!MuHutiHLH=!^HHuH+%qHE1EHtEHgEI,$pLE1LEH=h~!HV1H5[H?KMEH E~!HR1E1H55H9%MHpfATIUHSH!HH~dH%(HD$1D$H9HKHHZpHpH@0fHxHp@foA'HL$HuH@IT$P X0~BHmt$LHL$dH3 %(HH[]A\HKHEHLH谟HHoH=!JHHHSHC0fHufo t&HS@HL$IT$HCH{C K0AHmtt$L*3oHeCH |!HPH5y11H9eKHERCnnAVAUATUH1SHH H=٠!dH%(HD$1HT$D$ OFnLd$MI,$nHCL-Ü!L9H}HH9cHE|IHcnIL$HUHsHxLD$ 8IH+rHm}t$ LGnHL$dH3 %(LH []A\A]A^FgIHnH(nHCL-!L9BH5!HI+HS HLH=Ǜ!rHHH}L9ugHEIH=!{IHIL$IUHsHxLD$ 2HH+tvLMHmtyt$ L>mH5?!HuHMtPLHH=!ǜIHfH+lMIHLM@H@zL-y!IEL-y!IEkHLAzllfAUIHH5ATUSH(dH%(HD$1HL$HT$D$NFlH\$L%J!HCL9Hl$HH}H9$HEmzIHLlIMHUHsHxLD$FH+IHm4t$LvHL$dH3 %(L H([]A\A]LHaGIHSHLL*HH,Hl$H}L9u]HEH=T!yIH~kIMHUHsHxLD$EH+tHmtnt$L谄:/kH5!FuHutTHLH=٘!脚HHmH+jHE1>H>H>t2?H=w!HV1H5H?FH w!HR1E1H5uH9eFHnjpjff.fATI1USH H=!dH%(HD$1HT$D$ VAjH\$HtiH+ZjH=ӗ!xHH;jIt$HxHL$ HSeHl$HJ!HEH9Ld$HEI|$H9I$?HH!eLCHC0fIMfo LC@HuH{C IT$LD$HCK0\9HmI,$t$LJ}HL$dH3 %(HKH([]A\A]HH5?#HUHLHHHLd$I|$H9u#I$H='!">HH#dH5 !>uIt$t6LLH=!萒IHu6L6H6H=o!HV1H5H?>HmcH1{6H+cH1b6H ~o!HR11H5oH9_>HE6fcfDAWAVAUI1ATIUSHH=ԓ!dH%(HD$x1Hl$8D$ HD$0HHD$(HD$ HD$#9cH\$8HH+/c1HL$0HLH5Gz;H|$8HG4Ht$2=HHLt$M~ 8RL|$@SPHL3E1H|$0HLl$XL5HLl$`Lm5H4#HSHL$ LI|$8HHH35HHD$EH18:H|$IH)H|$ H0H|$(H5H-4n!HUHL$xdH3 %(LHĈ[]A\A]A^A_AE0LRmHD$(HaH HD$X LGA IOHT$(H5)YaH|$0IO HT$ H5݁7aH|$0IO(HT$H5軁aL5Hl!H5߫1E1H:X4H|$Ht H/uC3H|$ Ht H/H|$(HEH5XHHGH(`1HL$0HLH58H|$8HWHt$:HHLt$Ma8SPL|$@HE1L0Xff.fH=(!Ll$8LeIHH=!L1I.IuL2MtbL1ILHĩH5/1I,$IuL1ML-j!I}3t"5I}H52E1\AELjIHD$ H^HSI HL$ LI|$Ll$`5HHH1HHHHvHt$E1H6IH/1H/1EMIHLM0I~9IHT^LHL|$@H95CD5LLAE_SP/fD$SLAnD E>AbDSEARD[EAuCSuCD{EAuCKuC{@@uCCuCs@t@uCDc EtkAuC DC EtWAuC Dk EtCAuC DK Et/AD[ LS EtAuAIEEuHt$8/MI4H Ih!H5,E1H90CL=h!H51E1I?/D$ w\Hg!H5E1H;1/VL-H=n!Ll$8FH5ϥH=2HI!H#C /ff.fAUIHH5LATUSH8dH%(HD$(1HL$HT$ 4>H\$ L%!HCL9Hl$HH}H9HEHuH{5u;H"g!HH+t;HmHt$(dH34%(H8[]A\A]H'g!HH+uHHD$p-HD$LH.5HSHLLHHt_Hl$H}L9>H5&!4*HutOHLH=!誈HHH+uH,1HHD$,HD$]-H=e!HV1H5H?4H e!HRH51H941H4AUIHH5\ATUSH(dH%(HD$1HL$HT$D$2YH\$L%!HCL9Hl$HH}H9$HE=fIHYIMHUHsHxLD$+H+IHm4t$LFqHL$dH3 %(L H([]A\A]LH13IHSHLLHH,Hl$H}L9u]HEH=$!oeIHXIMHUHsHxLD$*H+tHmtnt$Lp:{XH5̄!2uHutTHLH=!THHmH+=XHE1s*Hf*H\*t+H=sc!HV1H5fH?V2H Uc!HR1E1H5EH952HWWff.fATIUH-!SHHH~dH%(HD$1H9HAT$PHvH%/H+HHWHL$$2HHt#@ hW@uWH{0HL-H,c!H<$HL$dH3 %(HH[]A\H0HCt}HLH軄HHtAT$PHsHb.H+HtCHVHL$$1HH`@ V@VH{08H(H a!HPH511H90#Hm )ff.AWAVAUATIUHSHHxH~dH%(HD$h1D$,}H;=`!H-f.S U f(1fT% fV% f.@Df.|$fT f. L:!IHU1H!I/ILf'MUMfI~ 1!IHUH)*ImHD$UHULHHLHLL$ȂI.IL&MQU/HHUt/IHULd$0L|$,LF-LLH&Ht$LLL/LLMHH,S(D$, C,р@M]HMLLLL\$.H0L0Ds(T$, S,Dt$H|$),H+\$I] H\$hdH3%(LQHx[]A\A]A^A_f.*D$HTLS!IHT1H4!ImIuL%MSMfI~ 1!IHSHE(ImHD$SH|$SHD$HLHHHD$݀I.IuL %MjS-HHS-IHSL|$0Ld$,L_+LLH$Ht$LLL .LLMHH*S(D$, C,рYMMMHLLLLL$,H).L!.Ds(T$, S,LD$Dt$LD*AL+T$MU H5\!+L)f.LINf(1ҹfT fV f.Df.L$fTf.H]IHt$I}/,jDH-x!!ӀVRH}0R]L}M1!IHH=)w!-w!gH=/w!3w!1H=5w!ts=w!H=?w!t]Gw!H=Iw!tGQw!'H=Sw!t1[w!H=]w!tL5Tw!A^QI I>uH=x!tH-x!]H H}uLLp"I,$QPImPfPH w!!7QH9QYTLyM1IHH=u!u!H=u!u!H=u!tru!H=u!t\v!UH=v!tFv!H=v!t0v! H=v!tHv!XH H8uH=v!tL v!AYI I9uLL.!I,$#PH*L*Im?O$OH+[IHI}1o)H H CC!HK|IHuL'$OIqLLL$ $zNLL$4HhY!H5ɘE1H8.!)IvL#MOH5t!L#d1OH5ut!L#OH59t!Ly#NH5s!L]#NH5s!HA#NH5%t!L%#NHpLHD$#HD$nMH5t!L"RMH5s!L"6MH5ns!L"bMH52s!L"0LH5r!Hv"LH5Zs!LZ":LfAWAVI1AUATUSHHxH=E|!dH%(HD$h1Ll$0D$(L!MLd$0MI,$MI~H,x!H93HW!II9|HL{MnL%L$%HT$(LLD$ H+I.=wQH HcH>1@!HL$hdH3 %(Hx[]A\A]A^A_ÃHc ff.fAAυAA>BIH=H(LI~H5v!H9@H5v!$I~LLH=v!ixIMHU!I9 IHSHHMnHT$#L$#H|$HT$(LD$I/VI.t@=tYH5LcI>Aff.AALD$D$ff.Dt$D 4$tt$(Lyat1;Mw HU!HH5T!H9u/MAL$,LLH=u!I-#uI~H5T!H9#H5x!L9\H5“L\IH;LHH=u!vI/H$JH<$L{L!H5rLD$,HJLHHD$H=t!JvLL$II)GJMIL!HD$HJH=bt!TIHIL M_LIVHt$LD$,LL\$LVHFLT$V"HD$Ll$IG I.u LLl$H|$Ll$#|$,HT$AHR!H9$2L4$L9&H4IIM9LL$HT$+LL$HT$>BE  @L}0LeMt$L%HH:MDAff.fEdAL$~LLDdHL9uAH=b!D$HHIL{HC0fH{L{@HHL$IUfo -HCC K0( t$LM5H\HL$(dH3 %(HH8[]A\A]A^A_fDuH;=@!"LMALHH=a!D$cHH9IuHxHT$ t$L9MEH+u9H1m,EHD$M}AHH59HULpHU/1HDMLC@LMHC0y HC LHT$LL) t$L}L?H5?! 9HUH ?!H5‹1HRH91IHEH\HmIMtH=n`!D$@HH7HxLHL$IUt$LK}L4H+ 8H1H} Mce8IEL)H9E(LsK/H=_!@HHgHx1SRPHMA@HH|$$WL- ZYH^H=b_!D$?HH771HxHL$IUt$LJ6HHHx1HھLHI/HHp@LH1H@04HC LT H+J6H1jH~U  t@1L}H,L}H#AD2 @@ueD 0LLDHL9@HXE1A5C4wV~w9@sIIHM9u LLD LC0H5W!DQMMAtqLLH=aW! YIH*HmuH1I,$t1~LL1 bLYHAL6!IQH51I:H=5!HV1H5H?HmuH1H 5!HPH511H9HE+//AVH N!AUATIHHUHuSHhH-5!dH%(HD$`1HD$D$ Hl$ Hl$P1LL$(LD$ZYH\$H9Ll$ H=Y!1L;u/H\$ H#H\$H+/oKH|$)L$ oS )T$0o[0)\$@H9WIL$L5~U!L9Hl$I$H}H9HETHH/HpH@0fHUHp@HxIt$Lfo%@ LD$H@`06I,$.HmuHLl$T$Eu(A U,DHL$XdH3 %(HH`[]A\A]A^fH5T!HQMD$ALHH=iT!VIHH\$Hl$H}L9uuHEH=9T!4HHHCHC0fHUHC@It$H{Lfo5k LD$HCs0I,$-fDH5S!wLUAHHH=S!HUHHLL 2!IPH5~1I9{1H{H5T!Ll$ H9[Hs LH|$H9t nAxL,H\$IL$L5S!L9^I$L2!IRH5}1I;I,$,1A!H5,nLvMtg1mIHtXL%~L! Al$uaI I<$uH=N!tL%M!Al$I I<$uLLXIm+H+H1 GIt$Ly,H @+H0!H5 y1H:It$LYc+H\$HHD$H!H(7+O+UH 4K!HHSHH oH(H0!dH%(HD$1LD$D$H\$HD$H9H=T!1HT$X8+HD$HHD$H(+H=P!1HHtvHt$H{HL$HVHut$H|$6!H5E!uIt$tgLLH=E!qGIHuHm!H1LHzH+ H1aH=}$!HV1H5ppH?`H Z$!HR11H5KpH9;HE ATIUH-D!SHHH~dH%(HD$1D$H9ujH%HH3 HL$IT$HsHxH+t$L40HL$dH3 %(HH[]A\H$HCtrHLHEHHH=.D!y$HHHL$IT$HsHxH+tt$L/`uHH "!HPH5n11H9.H|L5AVI1AUIATIUSH0H=FG!dH%(HD$(1Hl$ D$ HD$H!H\$ HH+1HLHpIN1Ht$HLVIL;%o"!H=B!5#IH}HT$Ht$ HKI}HD$HHHLD$ H|$ H/H|$H/uxt$ H.HL$(dH3 %(LH0[]A\A]A^1Ht$HLHEH|$ H/H|$H/uLl$HILL$ HH|$H/F!HCL9Hl$HH}H9$HEIHIMHUHsHxLD$'H+IHm4t$L)HL$dH3 %(L H([]A\A]LHIHSHLL?HH,Hl$H}L9u]HEH==!IHIMHUHsHxLD$YH+tHmtnt$L):H5\=!uHutTHLH=9=!>HHmH+mHE1HHtH=!HV1H5gH?H !HR1E1H5gH9Hff.fAUATUHHH5yZSH8dH%(HD$(1HL$HT$ D$ >H\$ L-:H\$(dH3%(LH8[]A\A]LL=HCHHL=HHHT$Ht$HAtrH=(;!sIHHT$HMHsHxLD$ HRH+t$H|$H/t#t$ H{&)uHH+RHE1>H !HPH5e1E1H9H' H==!H=!H9tH!Ht H=a=!H5Z=!H)HHH?HHtH!HtfD=%=!u+UH=!Ht H=v!dHZø fPHx!H59^H8ZfSHH_dH%(H$1HL!H5UI:H$dH3 %(Hu HĠ[Zf.UH=8!SQHHt1H@@Hk1HHHC0HC HHZ[]ff.fUH=D8!SQHHt1H@@Hk1HH HC0HC HHZ[]ff.ff.PHrZQHt H7!HZH!HZ@QHt H!HZH!HZ@PH"ZHfPHrZHfATH 2!yUSHHW,dH%(H$1H$HxIS(yH 1!LxJHQ!{8HcS4HK HsDKPHLCP1ATUWH=\+H H$dH3<%(u H[]A\USHHRHGHh t HS8HlXH[]ff.fSH_H?1u HaH[hUHH=5!SHdH%(HD$1D$HHtHT$HuHxD$ HL$dH3 %(HuH[] ff.UHH=Q5!SHdH%(HD$1D$HHtHT$HuHxD$HL$dH3 %(HuH[]ff.SH=8!1HB@,H=8!HHHH(uHH[SH~HH5}4!H9u HH[*uHw!H5xQ1H8>ff.wATH /!USHHHHQH H-~!dH%(HD$1LD$Hl$gHT$H9HzH5f5!H9RPHsH|$HHHLd$HHt#@ t@cH{0HLH ,!H|$HL$dH3 %(HuWH []A\;H=!H5VZ1H8MHD$HtH(HT$21fDUH -!HHSHH|PHH0!dH%(HD$1IH$H$H9tI;1Ā"H!SHFHH9I%!tHWt [HVH{H1ff.SHFHH9$!tHt [HVH{1ff.QHHs!HZff.fUHSHdH%(HD$1HH'HH߾HHH H+HuH[HL$dH3 %(HuH[]ff.UHSQHt3HH3HlHtH CPHCZ[]Cff.fHH@HH@HH@QHRt H7 HZH HZ@QHRt H HZH HZ@QHRt H HZH HZ@QHt H HZHZ HZ@UHSHHHuHH1H=7<}H+dH[]ff.SH~HH5!H9uH{?H H[5uH H5;H8K1[SHHHH dH%(HD$1Ht$o$HD$HsHxUH|$H/tHHL$dH3 %(uH [HD$HD$ffDUHHHSH(dH%(HD$1Ht$D$ #toH={!HHHD$H{HT$ HpSH|$H/t.t$ HHL$dH3 %(HuH([]1f.HHHdH%(HD$1H%#tH$H|$dH3<%(u H1Off.@UHHHSH(dH%(HD$1Ht$D$ "toH=[!HHHD$H{HT$ HpH|$H/t.t$ HHL$dH3 %(HuH([]1f.SHHHH dH%(HD$1Ht$!H|$HH|$H/THL$dH3 %(uH [H(HHdH%(HD$1Ht$!tJHD$Hxu+Hv HH|$H/t&Ht$dH34%(u'H(H H1HD$HD${ff.H(HHdH%(HD$1Ht$ tAHD$HxmH HH|$H/tHt$dH34%(uH(1HD$@HD$@H(HHdH%(HD$1Ht$c tJHD$HxAu+HF HH|$H/t&Ht$dH34%(u'H(H[ H1HD$觿HD$Kff.H(HHdH%(HD$1Ht$tAHD$Hx1MH HH|$H/tHt$dH34%(uH(1HD$HD$贿@H(HHdH%(HD$1Ht$3tAHD$HxH HH|$H/tHt$dH34%(uH(1HD$耾HD$$@H(HHdH%(HD$1Ht$tAHD$HxMH HH|$H/tHt$dH34%(uH(1HD$HD$蔾@H(HHdH%(HD$1Ht$t=HD$Hx葾t/H6 HH|$H/t&Ht$dH34%(u'H(1H HHD$WHD$ff.SHHHH dH%(HD$1Ht$otBHD$HsHxYu0HN HH|$H/t'HL$dH3 %(u(H [1H^ HHD$讼HD$RfSHHHH dH%(HD$1Ht$tOHD$HsHxt,H HH|$H/t'HL$dH3 %(u(H [H H1HD$HD$貼fATIHH53USH@dH%(HD$81HL$(HT$0D$ HT$0Ht$ LHT$(Ht$LH=!HHH=k!HHHD$HT$ H{HuLL$MD$HHHRH|$ H/uH|$H/ut$LuF1HH=2H蝿HmLH+H\$8dH3%(uBH@[]A\1HmuH蜺H+uH莺1H|$ H/uz1!UHHHSH(dH%(HD$1Ht$D$ tlH=;!HHHD$H{HL$ HUHpH|$H/t2t$ HHL$dH3 %(HuH([]1轹ffDUHHHSH(dH%(HD$1Ht$D$ tlH={!HHYHD$H{HL$ HUHpH|$H/t2t$ H8HL$dH3 %(HuH([]1覹fDUHHHSH(dH%(HD$1Ht$D$ tlH=!HHHD$H{HL$ HUHp߽H|$H/t2t$ HHL$dH3 %(HuH([]1=fDUHHHSH(dH%(HD$1Ht$D$ VtlH=!FHH=HD$H{HL$ HUHp/H|$H/t2t$ HXHL$dH3 %(HuH([]1}&fDUHHHSH(dH%(HD$1Ht$D$ tlH=;!HHHD$H{HL$ HUHp/H|$H/t2t$ HHL$dH3 %(HuH([]1轶ffDUHHHSH(dH%(HD$1Ht$D$ tlH={!HHHD$H{HL$ HUHp请H|$H/t2t$ HHL$dH3 %(HuH([]1覶fDUH !HHSHH-H8HP dH%(HD$(1LL$LD$ D$H\$,HL$H9HD$HH(HL$Ht$HHL$HT$ Ht$H=2!}HHHT$Ht$LD$H|$HJHVHwHx蘻H|$H/H|$H/uɴt$H|$kuHT$(dH3%(HuFH8[]HmuH莴1HyH5/!H9LH|$H/1 fUH 4!HHSHH+H8H dH%(HD$(1LL$LD$ D$H\$茲HL$H91HD$HH(HL$Ht$HHL$HT$ Ht$H= !HHHT$Ht$LD$H|$HJHVHwHx8H|$H/WH|$H/u)t$H|$uHT$(dH3%(HuFH8[]HmuH1HyH5!H9/H|$H/1ifUH t!HHSHH[*H8H dH%(HD$(1LL$LD$ D$H\$HL$H9HD$HH(HL$Ht$HrHL$HT$ Ht$QH= !=HHHT$Ht$LD$H|$HJHVHwHxH|$H/LH|$H/u艱t$H|$+uHT$(dH3%(HuFH8[]HmuHN1HyH5 !H9H|$H/1ɱfUH !HHSHH(H8Hp dH%(HD$(1LL$LD$ D$H\$LHL$H9HD$HH( HL$Ht$HHL$HT$ Ht$tH=R !HHHT$Ht$LD$H|$HJHVHwHxH|$H/SH|$H/ut$H|$u3HT$(dH3%(Hu7H8[]HyH5b !H9%HmH1華8UH !HHSHH+'H8H dH%(HD$(1LL$LD$ D$H\$輭HL$H9aHD$HH(HL$Ht$HBHL$HT$ Ht$!H=! HHrHT$Ht$LD$H|$HJHVHwHxH|$H/0H|$H/t,t$H|$u!HT$(dH3%(HuMH8[]-HmuH1HyH5 !H9H|$H/1藮UH D HHSHH%H8H@ dH%(HD$(1LL$LD$ D$H\$HL$H9HD$HH(HL$Ht$H HL$HT$ Ht$ H="!mHHUHT$Ht$LD$H|$HJHVHwHxH|$H/H|$H/t,t$H|$`u!HT$(dH3%(HuMH8[]荬HmuH|1HyH5!H9H|$H/|1UH HHSHH#HHH dH%(HD$81LL$LD$0H\$脪HL$H9)HD$HH(HL$Ht$(H HL$HT$0Ht$  gHT$ HL$(HrHy蚳8H HH|$(H/ H|$ H/uHD$3HD$HL$8dH3 %(u$HH[]HyH5!H9G1襫DUH  HHSHH"H8HP dH%(HD$(1LL$LD$ D$H\$,HL$H9HD$HH(HL$Ht$H HL$HT$ Ht$ H=2!}HHHT$Ht$HxHL$HRHvAH|$H/nH|$H/tCt$H|$y3H\$(dH3%(Hu:H8[]H|$H/R1菩HyH52!H9ff.@UH d HHSHH !H8H dH%(HD$(1LL$ LD$H\$ 褧HL$ H9IHD$ HH(HL$ Ht$H* HL$ HT$Ht$ H=!HHHT$HL$HxHRHq讨H|$H/nH|$H/uOH\$(dH3%(Hu H8[]HyH5!H9EǨUH HHSHHH8Hp dH%(HD$(1LL$ LD$H\$ T8HL$ H9HD$ HH([HL$ Ht$HHL$ HT$Ht$H=Z!HHHT$HL$HxHRHq~H|$H/H|$H/t3H\$(dH3%(Hu'H8[]HyH5!H9J/̦uDUH HHSHHjHPH dH%(HD$@1HD$D$ H\$P1LL$8LD$@ZYFHL$H9<HD$H%H(HL$Ht$ HxHL$HT$0Ht$WHL$HT$(Ht$6H= "HHHt$H|$ LL$HL$LD$HVHwHIHxM@H|$ H/H|$H/t@H|$H/uZt$H|$u%H\$8dH3%(HHH[]%HmuH1HyH5!H9ǬH H5)&1H:ץH|$ H/H|$H/1h[ff.UH 4 HHSHHKH8H dH%(HD$(1LL$LD$ D$H\$ܢHL$H9HD$HH(HL$Ht$HbHL$HT$ Ht$AH= -HH`HT$Ht$LD$H|$HJHVHwHxxH|$H/H|$H/t,t$H|$ u!HT$(dH3%(HuMH8[]MHmuH<1HyH5 H9H|$H/1跣UH t HHSHHH8H` dH%(HD$(1LL$LD$ D$H\$<HL$H9HD$HH(sHL$Ht$HmHL$HT$ Ht$H=B HHHT$Ht$LD$H|$HJHVHwHxȡH|$H/%H|$H/tIt$H|$H\$(dH3%(Hu'H8[]HyH5S H9&萡9fUH HHSHH+H8H dH%(HD$(1LL$LD$ D$H\$輟HL$H9aHD$HH(HL$Ht$HBHL$HT$ Ht$!H= HHjHT$Ht$LD$H|$HJHVHwHxXH|$H/(H|$H/uYt$H|$uHT$(dH3%(HuFH8[]HmuH1HyH5 H9H|$H/1虠fUH  HHSHHH8H@ dH%(HD$(1LL$LD$ D$H\$HL$H9HD$HH(HL$Ht$HHL$HT$ Ht$H=" mHHMHT$Ht$LD$H|$HJHVHwHx舡H|$H/ H|$H/u蹞t$H|$[uHT$(dH3%(HuFH8[]HmuH~1HyH5 H9ѾH|$H/v1fUH T HHSHHH8H dH%(HD$(1LL$LD$ D$H\$|HL$H9!HD$HH(lHL$Ht$HHL$HT$ Ht$H= HH0HT$Ht$LD$H|$HJHVHwHxH|$H/H|$H/ut$H|$uHT$(dH3%(HuFH8[]HmuHޜ1HyH5 H9鴽H|$H/Y1YfUH HHSHHKH8H dH%(HD$(1LL$LD$ D$H\$ܚHL$H9HD$HH(sHL$Ht$HbHL$HT$ Ht$AH= -HHHT$Ht$LD$H|$HJHVHwHx蘝H|$H/H|$H/tXt$H|$ uHT$(dH3%(HuMH8[]HmuHC1HyH5 H9飼!H|$H/:1跛UH HHSHHH8H` dH%(HD$(1LL$LD$ D$H\$<HL$H9HD$HH(L H- HHLEMaH L%S H5e M\$`HH`HMkMM{(HY@L-* L5 L=$ H (H H-I$H5 H H H H=& H H Hq H 赓H= 術H= 荓H=. yH= ŗHH~H= HH5m Î?H=, HH5O 襎H+H=< gHH H5, H|HHHH & 1HH5 HnH(WH5H/Hh HEHm H+ H=ΔIHHL1H HH5茎IHj HH= }HHH5B HHH5teH+JH=j6HH?H5bHKHHH=` I1H HCH5GIH HI,$QH+:Hm"H= uIH^H HH5H- 舒H H5N LjH# H5VLLH=U 1H7H=,IHr H+HH5hLO IHC HL=; AAA@nH5 1ÖHHI1H膐IIHH+IILSML% I IOTIItNEAt5@APL _ IH5E 1 HAL LI L= L M'MAH5# 1蹕HHI1HIIGHH+IWI7LVI H Y H 1H5d GHHp H5I 1%H]HV 1HHI1H=V ѐHH HHH5L謏1H=HH4 HH- H5LHjtHH5LPZ1H= :HH Hmfo?nIHLLx AH5@I H@(KH"Ls8HC0CPԎ1H=C 辏HHd HHHLH!fo mLx H58H@(HH0Lp8@PHeoL5 IHt1I~襌HHI6HL{/IH-V LeM1L5 H L|LHI.H"HLL΍HH@uHxH5vL趐)H5fLH藐xZL[]A\A]A^A_HHinvalid signal dictTrueFalseF(i)argument must be a contextargument must be a Decimalsignal keys cannot be deletedO(nsnniiOO)O(O)InfsNaNexponent must be an integer%s%liargument must be an integer(OO)OO|O|OOOOOOOODecimal('%s')-nancannot convert NaN to integer|OOOOOOOOOformat arg must be str_pydecimal__format__invalid format stringdecimal_pointthousands_sepgroupinginvalid override dictargument must be int or floatnumeratordenominatorO|OOas_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version____libmpdec_version__copyprecEmaxEminroundingcapitalsclamp__enter____exit__realimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____reduce____round____ceil____floor____trunc____complex____sizeof__adddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixinotherthirdmodulodecimal.ContextManagerctxdecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.Decimaldecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.Contextvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}internal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)Cannot hash a signaling NaN valuedec_hash: internal error: please reportvalid values for capitals are 0 or 1optional argument must be a contextinternal error in flags_as_exceptionvalid range for prec is [1, MAX_PREC]valid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]internal error in PyDec_ToIntegralExactvalid range for Emin is [MIN_EMIN, 0]valid range for Emax is [0, MAX_EMAX]valid values for clamp are 0 or 1argument must be a signal dictinternal error in context_settraps_dictinternal error in context_setstatus_dictcontext attributes cannot be deletedinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICinternal error: could not find method %sinternal error in context_setroundargument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strconversion from %s to Decimal is not supportedinternal error in context_settraps_listinternal error in context_setstatus_listcannot convert signaling NaN to floatcannot convert Infinity to integeroptional arg must be an integercannot convert NaN to integer ratiocannot convert Infinity to integer ratiointernal error in PyDec_ToIntegralValueoptional argument must be a dictformat specification exceeds internal limits of _decimalexact conversion for comparison failedinternal error in dec_mpd_qquantize0[`[[j[P[v[[H[h\R[8[^[Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. localcontext($module, /, ctx=None, **kwargs) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module?B d d ? ?B?;d k @ `& e& *'d''4'd'()(4C(() )h)<o)))8)x) *Hj** *`*** *`**+H-+b+$+++(+`,9,W, g,p,,,X,v- - -T*.H.X.<s.., y/ /!0T!H0!0!0("0h"0"'1#Y1<#t1#1#1$1L$1%L2X%2%2%3&M3X&3&3&3'4X'G4'y4'4(4X(5(5(6)6X))7)7)/84*8t*M9*9*o:@+:+z;+!<,<@,'=,=,->->@-3?-?-=@8.@.@ /A/bA/A(0At0A0vB(1C1C1C1C,2 Dl2'D2`D<3JE3zE4Eh4LF4yF(5Fx5F5G 6cG6G 7!Hh7SH7H8IX83I8\I8IH9I98J8:~J:J ;Kp;}L;L,<.Nl<5N=eOP=O=PX>P>P>%QH?Q?Q?R0@4R@R@R(ASAeSBpV V V$ Vp @W `W4 pWH W` Wx W X 0Xp@[[H\x`]H```(0aa0bpd\df8f\Pggij4j@kl@l n`no qrP@x|@ }  `(!h!!<",%Ѕl% %p,&@l'''L..4/Л/@0P01<1@1ЩH2`202`P33$4P|44<55P546P647`|77`$8l88 9`\909 9L:0: ;;0;<@=d= = %l>&>(>,\?/?1?2D@ 5@7@: >>(>@?`0?P?p?@@,@T@0AAhBPBP`BdCD ELpFF\GH4Jt@KpLM4NtP0QQ`S T<Tt@UUUPV,VVVV W@0W``WWhW@X!X|"Y"Y"Z# [P#[l#P\#\#]$^0$^`$@_|$_$`$b%bl&c&Pd&e,'e,(fl(0h(i(pk,)ml)n)@p)qH* s*pt*u+wT+y+{+|,@~T,,, -T-`-.0@1 2@<`AzRx $0 FJ w?:*3$"D \pJ1|J0 tJ9Es0.L[0A\ hJVK{ A (0fEGS AA zRx L CMGDGDGDGDGDGDkJHM$J  J'H^8JHM@JHM,HJHMDPJ"ET$`0SEHA BAA$L0SEHA BAA00EJ0,EY A L0,EY A L0EJ40EJDL0FMA JuDAAPZ  AABA zRx $ :$ 13EAH [DA$1(E^H HFBB B(A0A8G~ 8A0A(B BBBC $zRx ,xF@KaEi R \zRx  n `KIE{PH"KSL A 69(H/uEKD0Y AAA zRx 0 ( 0uEKD0Y AAA `HLFBB B(D0E8GP 8D0A(B BBBA zRx P((hNIEGA ^ AAA zRx   <NEDG w GAQ L AAB LAA@/MAKpx 4NEG r AA zRx   @H /DE[ A NWD F A zRx  $. 0.JFHA T@  AABA zRx @$:(h/ENN0m AAA $(|0EHT0p AAA d(,1EHT0p AAA ](( 1|FAA c ABA zRx  $)8 ENNP/ AAA o (H|?ENNP/ AAA $ (@ENNP/ AAA d (@(TFBE F(A0DP 0A(A BBBA H8)̇>FOA A(DP (A ABBA zRx P$l-8)FOA A(DP (A ABBA tI)8)L!FOA A(DP (A ABBA "&@(*,FBB A(D0IP 0A(A BBBA U8*dcFOA A(DP (A ABBA lFp* FBB E(A0F8GFHMPLMJYU 8A0A(B BBBD $zRx ,8+d>FOA A(DP (A ABBA l%0+TFDD K0  AABA D2@,ܡFBB A(F0GP 0A(A BBBA i8p,cFOA A(DP (A ABBA \F0,4FFA D@  AABA $18- FOA A(DP (A ABBA )8X-cFOA A(DP (A ABBA D\F8-ܪjFOA A(DP (A ABBA R%L-FBB G(D0A8G 8A0A(B BBBA  q8\.hFOA A(D` (A ABBA 8.cFOA A(DP (A ABBA F0.<FDH G0  AABA \"L0/ BBB B(D0D8GT 8A0A(B BBBK $zRx ,9L/FBG B(A0C8G  8A0A(B BBBA ]0 0t*FAD I@  AABA $(&\h0\j FIK I(A0A8G 8A0A(B BBBC XJAx o(0xMEND0b AAA +X1FBB O(A0A8Dp 8A0A(B BBBG xXIxAp zRx p(-081$cFOA A(DP (A ABBA  F@2DoFOB A(A0D`) 0A(A BBBB zRx `(UP|28FIB J(H0DoRAU 0A(A BBBJ zRx ((3YENN@ AAA (+8H3cFOA A(DP (A ABBA 4 FH3FIK H(A0DhspRhA` 0A(A BBBH r83@>90==;8p 6P@5" 4/`493E3L2T`@2\1f` 1n 0x @/.%.@-Ч-@,@+@@*p)@`&$   0%0<`CJ ZmP@ YPbPDOo zPЩ``frp fveyeed @dc``ccb@b AaMa%`aЂa`K```4_`@_9^^ *@^0]>].\Y \E[@Y@Y@XW0@W"pV/0V9 VEUnp`ULU\TTP@TxSfS@%@SR  R`@R@QpQ@Q@P \P ( PIO@`O O%N0 N<@N WMCMJP M$L0LY0o)0@L<0|KKPJe@hpg{P1fc c XLI8>Ch"8888888888888888888r=8 H.=83FO*6.=83FO*6=8=88888888888 -%H@bZ8888 @ @ @"" "qh`"0 g""n`@@"`"@GA$3a1xw_decimal.cpython-311-x86_64-linux-gnu.so-3.11.13-2.el8_10.x86_64.debug$'7zXZִF!t/Kg]?Eh=ڊ2N eC@sU\ qc_hO*m}Xٜ@:B%ǧAC}Zmm) JZ!a =>m}&-DWn W>?ȉihP9ˠ CR^SimOrrMIlfjz%t6U VY $vn[؎g[ץ:Ԝ"sFrU=5LhG.9̰)ܭd["%nnzyћ1#F8Ծ;j$viY;4(#~gd5v<:986=|VӒB|EbzJۮc%ߘ)Zѣo2_c#dnŒ9рE/o\K ]-X#r i)Xt[ 7JiDoÈv1 vi|q5u < oa_ .Ia;( ؂MR,KG9%c/JMU"m-nČrh4 $ģAO%z#lRক>Ic. #>V EA_xhF'AtZ-bkE8i~$z}@ !+z|QƩF[oi\3jfuV$e==5b U}8ƝDo,WFwF>9u*J6=IDnAi?tFA_c12J4 s[Șb՟Koi[D*]bWgl)*O_uNPڞ;ǽT+мκxש-͂鐯%VG0^kezjdam@m#|xzeV| ~a}KbYcB #h%*E KQEKñ.4AhhDNU>\,ReٚDx*]4Fm1vFh)v*!?l7^ϡwixm8xu&Reftzo B]q6|~o n%ٹRΉT̈́#nU1P*>н Ő;)JDr_O-b!Eڂ?i{N(6-LGyxc r9:'$_;.3ooҒwO3*X_(ӠLdв"3+yP+fTT=ClsI޽lh*YQxX&_U)ʑœϝwf/&$R!DM)Gz- '?w&CP1s&錕m~l6& FnXNTȵ)t0v4 ܟ78`*~M#/WH)G3$|/4N9_x0u:Ƭ:EmntI=ZK3t69h^"Cİ;PJ*1ږ1_lhN~=jBJqҽgu C̋!h#żHՐNZ[3zCu\Mk_fWA*SSaz @dC*gbӒJb81G{1`VP6_` :RN\Z.7.# '_-'ۯ܃hp5nK.lۭp @]>5 Ʃn;DђdP'RR,i\`fxE(!^z*3H>S lUkS& GĎLZ<9l'J=Ciac|BIdxEڳEEx- 9(%@rFPd<6_`so"Y(g9'꼼+q1Sh I5ڶ|UʹQY HT8,SC#yK^\>K^}$'RD,45-UJT 1 ];5]QzZXꙬ,Ѯ4V02n3.o_HL#1!Q"U&Q:PAi  cS3K2'klZPzl=mf94mfQaO 5ݚUU2+Ak/bM,}‰#F F >:t? df $h?Y&}McV[uG8SوI2y-"<h09'!+I w~v`ZXnyp+vm;#׊O鞋mi+IwMI7$ aJb1d+/lOꜮ2VR6fAb9 h>5*9Ϩ7du<_ݙY,k_`rE+z|`2M.kB |yl¤*nʪ~rq?+9uoM[$!o;"2lrImTvQU_XaP05dNt \7gc9UogY`kI1e-FxKLZr}25bha,g&=ZdNTi qGu @CPU}#KG]X&M^ql[DJژ|Ƈj?q cpx ׶T: i  GZ.E|ΝSX(Ʈ'xWK@ws2%ӻePs_?[^tYuگ4pl<I/3"~oJZ}JZ)1sA-TVP?RM<3ȶ8ufvqJ瘎fYGRG)ӄCVA&JNAq}5WUYcqXόi)ި sETCOn0sYI0%'sC\9c̕ -/0F֎']k |~{5+62ɿ/sz1|c[[bϦ$qN]xP7Ѽ(gYZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.note.gnu.property.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu.build.attributes.gnu_debuglink.gnu_debugdata 88$o``4( 0@@*8oj&j&Eo8(8(PT((<^BHeHe0hxwxwcww0 nЃЃ wl} l iid tt6ȫȫ ""ȶ"ȶж"жи"и0"X# `"X `bX$ |L (