asda?‰PNG  IHDR ? f ??C1 sRGB ??é gAMA ±? üa pHYs ? ??o¨d GIDATx^íüL”÷e÷Y?a?("Bh?_ò???¢§?q5k?*:t0A-o??¥]VkJ¢M??f?±8\k2íll£1]q?ù???T ELF>9@X!@8 @XX   ! !@H   ! !888$$888 Std888 PtdQtdRtd  ! !GNU" 6 !iH!ikBE|qX TFKHu T  N9C'4O~t{jp.~-Z[  -eX3>cDS9'N9I^8, {2y F"?=EeP!xX!lP!H __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizelibm.so.6libpthread.so.0libc.so.6sqrtPyFloat_FromDouble_PyModule_Add_Py_dg_infinity_Py_dg_stdnanPyFloat_TypePyFloat_AsDoublePyErr_Occurrednextafter_PyArg_CheckPositionalPyLong_FromUnsignedLongLongPyNumber_Multiply_Py_DeallocPyNumber_FloorDividePyLong_FromLonglog1pfmodroundlog__errno_locationfloor_PyRuntime_PyLong_GCDPyNumber_Absolute_PyNumber_IndexPyNumber_Subtract_PyLong_Sign_PyLong_NumBits_PyLong_RshiftPyLong_AsUnsignedLongLongPyLong_FromUnsignedLong_PyLong_LshiftPyNumber_AddPyObject_RichCompareBoolPyExc_ValueErrorPyErr_SetStringPyBool_FromLongpowPyObject_GetIterPyIter_NextPyLong_TypePyLong_AsDoublePyMem_Realloc__stack_chk_failPyMem_FreePyExc_OverflowErrorPyMem_MallocmemcpyPyExc_MemoryErrorerfcerf_PyArg_UnpackKeywordsPyLong_AsLongAndOverflowmodfPy_BuildValuefrexpPyErr_SetFromErrnocopysignldexpPyExc_TypeErroratan2PyObject_FreePyObject_MallocPyErr_NoMemoryPyErr_ExceptionMatchesPyErr_Clear_PyLong_Frexpacosacoshasinasinhatanatanhcbrtexp2expm1fabs_Py_CheckFunctionResult_PyObject_MakeTpCallPyLong_FromDouble_PyObject_LookupSpecialIdPyErr_FormatPyType_Readyceillog2log10PySequence_TuplePyArg_ParseTuplePyNumber_TrueDividePyLong_AsLongLongAndOverflow_Py_NoneStructPyInit_mathPyModuleDef_Init_edata__bss_start_endGLIBC_2.2.5GLIBC_2.14GLIBC_2.4o@ui }ii _ ui }Uui } ! !p ! !@ !yH !` !h !ٻp !ļx !̼! !(!08!@@!H!PX!`!h!px!`!!!! !!!!@!!!ж!!!!@ !(! 8!@!H!YX!`!h!|x!!!!`!"!!!!]!!*!P!!.!0!` !(!g8! @!3H!0X!`!8h!Px!@!>!p!!C!i!!M!\!!!`!!S! X! !p(!pO8! @!H!X!`!Yh!Ix!!]!P! !c!!`!k!@!!t!W!`!z!O! !(!J8!@!H!PX!``!h! Yx!!!!!Ȼ!@v!!!!`!!! !!! !(!8!`@!H!pX! `!h!x!!̻!|!!!@{!@!!!!!0f!!!з!` !(!8! @!H!pX!`!h!Px!`!ۻ!!!ֻ!!!'!!!!`! H!ԼP!`! !h!!!ټ!!@ !!!` !!c@!!! ! (!0!8!@!!H!#P!1X!:`!<h!?p!Ax!C!E!F!G!K!N!P!V!W!X!Z!]!b!g ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !( !0 !8 !@ !H !P !X !` !h ! p !"x !$ !% !& !' !( !) !* !+ !, !- !. !/ !0 !2 !3 !4 !5!6!7!8!9 !;(!=0!>8!@@!BH!DP!HX!I`!Jh!Lp!Mx!O!Q!R!S!T!U!Y![!\!^!_!`!a!b!c!d!e!f!hHH9 HtH5Z %[ hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hM%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D%} D%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D% D%} D%u D%m D%e D%] D%U D%M D%E D%= D%5 D%- D%% D% D% D% D|WFW1H1H~%8iX1H8HֹH=ρrYH1[]$f.ر$f(qYkYD$$L$HLYf.f( YY$$HYuHmuHM A} MImuLE1T L9]H1G]L:]L]E1\HH|HHD$jI.HD$tHHLFLHD$4HD$H1#~IImtE13^L]LHD$HD$^H}]LI]L1]H\HI HH(1[]A\A]A^A_HuH1f^HHt$HL)HHmIuHMtGLLI.HuLImuLH8AAImL HmHH1H1HH1MH- H5~1H}eH+HHImt1L1+L$T$f.eT$f(L$aaD$FT$L$H\$uxIa7bH`IaIa\$L$T$f.T$L$\$aaHa[azaI/tAImfL17dI,$meL1eLhfLH+uHImt"E1eHbHcLye1HT$dH3%(uH(1Z1HL$dH3 %(uH(H H:gd$8)\$ t$T$0l$|$DD$0DL$f.f(D$ L$8hfD(UhDot$fTfD.m"mH;H H9Ou gL0p1uAYH[HE111]$"yyD$HD$D$HT$$HD$AYD$HH%EE$I/;$L.L;HkIO%E1%HB H:{'H5. H>G(I/uLH\$L#L$$IL#uHImt}Hm5H1}+H*uHH\$L#L$$IL#uHjI/uL\I+uLLLH(uH7|L*vL,$MeM!z**LLE1"8E!8D$fDTfA.J?"~?H;9 f.H{\$D$Dl$Dt$$fA.{gDt$DD$~ ũHfE(fDTfA.r>D $fDTfA.\>M>o=u<HE1@H;Lk>HHL*IHwFH}$FHxEH\$$HH|$$ITHL|$$EI9ELH)H9HOHALH"A?E1HGI,$?L4?NEH(1MI?Ll$Imt$E1?L|$I/`CLSCLE1t?LE1z?HDLuDMCI/uLE1M(? BHuPE1?I@LE1K>MCHE13LFH&IHGHH}HmH;- *I@HHWIH,HHPIH{}IHxI1HH] GLl$HL|$IWILH|$IHIHHIFLK;EEHE16OEaHI+t7E1FI.t[ImuLE1{FIFL\FHDI,$DFL7FLHAWAVAUATAUHSHHulHHۘH9<HIL-}L5vI)I|L=KLUA 1IIH t%HM 1HHH u H 1HHHHEHtHGHHtHWHHtHOHHtHwHHtHHHtLEIHtAIM)IIL9uMff.Hf(LfT f.rff/vHf.z f/աv:HD$D$f!f.z  t !@HAVAUATIUHSHH>HHHtaA~KI.HFL9ImBL&HrAAt#Lt$ ALDHHLHH5IH!1HH|I/A^LAEH+H(H[]A\A]A^A_HCD)H+IHL-IH1IMI8B|LH)A1AALHLI<AMM9H([]A\A]A^A_L  HIhHmI)HLHVH+11HuL-ML5"1IMLI8H)C\.A1AALHEAIDʼnHL9AED)(H=a H5bH?bff.fH H9FuF1f.@HHOf.{1f.@HuD$D$H@AWHAVAUATUSHXdH%(H$H1PHufLl$@IĽ Mt$t$1IfLHf~-LHH*H@H;% CH+M1MOf(E1LL)Af(fTf(fTf/f(X|$8DD$8D\DD$0DL$0A\L$(DT$(fD.zD\$(T$8IGIAfD(fDTfD(fDTfE/fD(DXDt$8D|$8D\D|$0d$0\L$(L$(f.z|$(IxIYT$8ICff.IT$8LM9uH; H'f.Hf~-LHT$ff~-*HD$AfEHHBD$fA.HD$8MIGDT$8MDd$8IG,JfE(EXDt$8T$8A\T$0D|$0E\Dl$(\$(fA.ztMt(d$(fD/wmL$(fA/vA|fA/w[D$8xHI,$uLM9H$HdH3<%(HHX[]A\A]A^A_fE/\vDD$(DL$8l$8EXEXfA(\T$0D$0fA.gaDL$8UHD$Jf~-nD$CHH9HH95H4T$M9tzLHxIT$e1VLnDT$fE.D$,HL H5eI:.1HIHHLHT$fD(fDTwfA.sfD.vDL$DXDL$XD$D$HD H5_eH:H+\1bf.HH)HHHILI@wzLWL9 LL_L9vNMHOH9vALHGH9v4LLG L9v'MHW H9vHLH9v LHH9wLf.AUA@ATL$IUHIT$SHHH?A)HLIc'IHHHL HHHLImH^LH+uHHH[]A\A]@Kff.HH H9Fu&Ff(fTf.“w31H5Hf.{3f(fT Wf. vfPЃHHHuYHSff.H(dH%(HD$1H H9FukFf.zxf(fT ԓf. w_ff.EʄuMH|$;HD$dH3%(uZt$H=bH(fHf.{f.{D$uD$D$Htxff.HHH H bRATUSHH dH%(HD$1HH>H͵ H9GOH~HWL$Ht$l$HHDd$Dd$HEfD.%hR~bfA(fTf.5H,HEfA(ĉJD~ fD(fETfD. >DEEfA(1HL$dH3 %(EH []A\@ f.ېf(H{d$HwHt$l$HHDd$l$Dd$EHfD.%=~57fA(DifTfD.EE"fA(Dd$Jt1Dd$l$Hl$HH1mD$d$HEy?fD.%mD5fE(fDT-XfE.;fDT%T-fD.%.DgfE(fDTfE.fDT%E"fDV%%HֹH=f_1H=ٲ H5H?"16jDHu H9FugF rJf(fTf.w H,f5GfUH*f(f(fT\fVxUSHH5 HHHHt$HZHmHuHHH[]Hu*Hf.zuD$D$Ht1H[]0ff.AWAVAUATUSHHdH%(H$1HL>HnIGHULeM;gIIE1E1MHL$PHH5ܰ fE11~ۍfD(I|LWI9=OH|L_I9\OfA(fATE1f. AHE f/wqI9fTf.%vyH9EEf(HH$dH3 %(HoH[]A\A]A^A_ff.f(L9-fTf.%7wEt Puff.ADEEWIMH|$Lf(HL$HT$DD$$)DL$LHL$HT$D $ADD$HL$'AjHT$DD$L\$4$1HD$fD(fE8D5fEfEDf/wH= H53SH?:H1[f_HuL$fT f.iH H5RH:Ht H5RH8L\ H5RI8nAWHAVAUATUSHHdH%(HD$81Ht$4H$H D$4  H<$ H<$ -HH H$HIſH$A>H?A)McDHHsff.H@HHsILI)I?MD)ILcLT$ISLIH@BLGL9vlLLL9v\ML_L9vOMHOH9vBLHw H9v5ILG L9D HLH9vLHH9wf.L8IHLHI.IdLLMHmHH0LLuIHImLuIIQ H9v1HMq L9v$IIL9vIIL9wf.kIHH|$HLL$HML\$IMLHD$hI.HL$LQHt$Hff.ILD$A@IHT$ MALLL$MI?E)Ic*HL$Ht$HHT$ ,Ht$(HLHD$HIHD$wLHLL$ HD$LT$L\$ HD$LD$(I*uLLD$L\$ LD$I+uLLD$cLD$H|$MM)LHILHH@II9IIOI9vNHMGM9vAIIwI9v4HMO M9v'IIW I9vIHM9v IIM9w{IHH|$LL\$H|$LT$IHHD$HHuLT$uLT$I*uLbMm@LD$ M?@LIIpLD$LLI?D)HcLIH=HT$ H|$L.HHLHD$5I/LT$IuLHD$ L\$ LT$I*uLL\$L\$Mf.M41A@LIIFLHH?A)IcHHD$HT$HLwHT$HHHHD$HT$tL\$Ht$II+uLHt$Ht$H.uHMaH|$L+H|$HHHD$HHuHL$踿HL$I.uLHL$蠿HL$HY#ff.fH$LfI<,HL@HL0HLLH3I裿H| H5=tHH8111UHu|$4tH" H53t1H:qff.ATHUSH0dH%(HD$(1HFHD$H1HT$H5BEH\$Hl$HSH{Hf.tf(-tfT Ouf.uff/"}HHt HFHL$(dH3 %(HH0[]A\H1HL$HT$H5tD:3ff.fHf.sf( $輼$~t5sIf(fTf.l$ff/4CD~Jtf.fD({D$fE.fETfD.`sfA('D5LsfE.ZA4$0fA(;HHHHH5W<HHHH@H+IuHoHmuH`Ll譾HJH= H?5+Ht$ Hf.kr"$srfEL*|$ AYX$[IMoHfLD%%rfD.d$s[D-rfD.r%A<$tfA(D $u,D $fA(ŽH觺!H H5AE1H9ػ讻$t$f!f.zq!qf!f.zlujDIqfD.D${D SqGL H58pI9HE1@f.f/pӹ!wf.D pL H5@E1I8jf.z f/\pv"|$f.=pfD(f(d!H+SHE1$;$HHH0f.pD${KD$蚼f.{ d$f.{\~ pf(fTf.ow*Hպu讻HuC蔸\pl$5ofTf.rHU H5?H8覹1Hff.@HH`f.0oD${KD$f.{ d$f.{\~ of(fTf.ow*Hu޺HuCķol$5nfTf.rH H5>H8ָ1Hff.@SHH HH>肺Rnf(f.H{\$T$WDl$Dt$$fA.Dt$DD$~ nnHfE(fDTfA.,$fD(fDTfA.f.-~mfA(fA(DD$DL$DT$|D\$DT$fD(DD$fA(\f/vjD~%:nfA(fETfDV7nEYfE.~ mfE(2mfDTfD.%eH fA([f/vD~%mfD(fA(fEWfA(fA(DD$A\YlDT$DL$蘷DL$DD$XDT$D~%fmfA(D\"XDl$D4$_D<$|$H|$D<$)D$~ lH0lfE(D\$fDTfA.D kD$:4lD<$fE.fD(i$諷 $HH{L$讷d$$f.#d$^~ 6lD $T$H_kDkfDTfA.fD(r,$gfE.$f.fD.fA(fTf.fA.HֹH=/;~H 1[!fD(fA(D$#%D$u|fA(D$fA(fD(fA(fA(D$d$El$Hul$D$D iHD\$fE(fE.wD$ʿff.AWAVAUATUSHH8dH%(HD$(1HH>Lf蕶HH]L聶IHH}{HxUH\$$HH/L$$IDžqHLT$$L9LH)H9HOHLH"H=eDM9r}MH]H5aI)JH/LnL;- 4HHKL HHDH{qHx1HHQLd$HL蹪T$IDžJLHM蜪L$IąIHILTK9r}ILH=EZL=UL)L54VJ| H9_u,WH}H9_sOf(7H[]l靦f.W{uf.H ,X$fTXf(XL$H)T$,Hc4H>\WWY蹢~X $fTfV XHY\WgWY~~VXfWYHWf(~7X%W\Y!W~X\BWWYɣ~W[ff.H(f(-VfTWf.\$D$艣L$T$f.DVfD/4f(L$T$EDT$D VA\EXD$fA(\xVfED\$D|$f(\ V|$fE(fE/D\%;VDYAXvNfA(|$fTV負D$D$衠1V\\$l$\\f(f(fT%Vf.%Uw{f(H(Uf/ff/rJk=U!f("f(fW=6Vf.fH~HKUHD$|$f|$|$"i@HAWAVIAUATUHSHH>סIHHAH7I9K<覡IHHkx HHH9H{I|$LHHzHHHD$HL$IH)uHMKLLI/HuLHD$蹝Ht$HHHt$ޝH|$IH/t@H+tzI,$MtLIH+1HH[]A\A]A^A_K1II,$u镢HiI,$Huq鰞HyHtHuHHÿ郞AWAVIAUIATAUHLSHHIHLjIHHHCI/HHbHDHL)lH+IvM;LL蛜ImH0I/uL/Ht_AtYLHdIHHHH+uHHD$HD$ImڡH[]A\A]A^A_HfDHHu H9Fu(FfTR R1f.@HsHf.QzuD$ĝD$HĢH8f(fD(%QfT _Rf. ff.3fA(L$DL$ T$DD$f.QfA/VfD/QD QfA(AXfE/l$DT$E\E\DY9QfA(T$D^T$DD$DT$ $Dd$fEDl$D$(fE/lfA(Dl$oD$D$L$5P^t$DPT$ ^fD/Y^t$(Y\t$l\ LPD$њDL$D^fA(fT=Pf.=PwAfA(H8A\fD(E\O^fD(fTPf.OvDL$衘DL$"Sff/wEOf/7,H@HD gf.]f/OO8D wO!6D$Dl$袘Dt$(L$ %OD^AYAXL$L$f/vw\ OD$艙DL$DYY ND$\ :O]DL$D^D^ff/v~f(dfED^wY ND$\ N DL$DYDY/D$#DL$fDT OfDV O!D AN"fD駖鷖ATUSHHHPdH%(HD$H1HtHHAHsH;H-8q H9oWH{H9oOIMff.z-u&辘HT$HdH3%(HP[]A\~=Mf(- MfTf.fD(fDTfD.fD(ɿYD\fDTfTfA/sYfTfA/m1fA/@]H{HH9o_Iff/H5p H5^JH:膖AH1LaIPHA1Lx HD$(Pjj8H HHv1yLH{H9oԝGff/lf/~]ԗf.Kf(93D$著T$H1QT$萗f.`KT$f(D$GT$L$H11?ff.@AWHHAVAUATUSHHdH%(HD$81HCHH HH?KIHHpn HhHEL5n L9uL|$HL[|$IHmLHHL9pLH|$uwfffLI*H*HYH*f.zuH+IuH蓓\ff/sfWJff/sfWJYYJf/sLIHFHH茓I/HH+uH!HL%1m L9eHmut$uHHl$LIHt`HpL9L9HH|$fI/H*Y\$\$uL舒L蠒IHuImuLiĔHD$ГHHL$8dH3 %(HHH[]A\A]A^A_IL-ff.@HH+uCHLMt8L HHtLLH'HmItH+uH近Mu1.|$YxH(|$鿚HVIm0LqImuL]踓HcLILHYHAPALs 1HD$(Pjj襑H Ht}HH8HhIHt_HD$UIHwLHI.HuL譐I/HsIm1;L耐LImLE1eH#ӐH(dH%(HD$1HQj H9FuoFf( FfTBGf.rD$QD$H|$蛐HD$dH3%(L$H=?H( H4f.FzuD$D$HtИf.v>HD$dH3%(f(fTFuf(H=f(H(鞑ɏf.3HD$dH3%(uf(H=H(ffDHD$QD$!tC"nfTF cE1f/vHH 'i H5QH9XH=h H5"H?;@USHHHHH;H-h H9o/oH{H9oW~uEfD(%DfDTfA.fD(fDTfA.d$ )\$T$0l$GL$0D$HfD(d$Dl$ fD(Dt$fETfE.DD$t$8HHf([] d$8)\$ DT$T$0l$趌|$DD$0DL$f.f(D$ L$8@fE.zcfD.|$fATwwf.vA-GCfD.{VfEfE/v fD/>fE/vfDW!DfA/#fE-Bf.ufD(f.rA CDL$DD$0Ս-BDD$0DL$|$f.%ffD/1fD.o-uBt`豎f.Bf(D$nl$Hf(t$t$HHH1[]f.z fE.fD.5A!l$f.Al$f(60D$0ҍl$T$0Hu~Bf(%AfTf.,֔ffD/vfD(lfE(bfD.zXfT=@BfD(CfD.Azu-A,"HֹH=_،2ff.USHHHkH;H-d H9oo,$H{H9oW~Af( @fTf.T${L$$Hbf.fD({@$$DD$fA.!fA(D $D $tH1[]Ã;uHfA([]2<$fTf.iHf([] f.?$ ͋HՋf.?f(D$蒋T$HNHֹH=%-oUHSHHHH;Rf."?${}H{:f. ?D${OL$$Hf.f(zQ~?fTf.>wq;uSHf([]ۉu贊HtH1[]u蟊HsD $fD.L${!f( $ $u,$=a>fTf.rڑHϺyHH fHHUHSHf.={RD$͆D$HՃ;f(uHf([]ԈD$9L$tH1[]uD$艉D$Htff.HH5b]ff.fHH5=ff.fHH52ff.fHH5"ff.ff.zl~=f(<fTfTf.wSf.%<wff.E„tN~5}=fTfV =fTf. ]<{)fV=<f.wfTC=fV=u针~=*=fTfV .=fTf. <z u fV6=fV==ff.AWAVIAUATIUSHdH%(H$1HQL|$@M1f1D~=<>I<f.v;v;M9f(rH$dH3 %(&H[]A\A]A^A_Å Q;H;5P_ L$O5:L$D~=;f.fD(6Dt$)džL$D~=;Hd$1M9LLHD$衅HD$5H<L|$@ՄIHDLL$fL$fL$D5/:D~=:fA.Ef(r0ff.E„If(H|$<L$7L$<L$91ۉ讂ffv9f(fED,:ETHDYEYfA(A\D\fE(E\EYEXEYEYfE(DXA\AXAXDXfA(AXD\EXAXI9ufA(fD(D\-8d$(XDL$ l$T$X\$AXƅ~%9D5U9f(DT$|$ fD(DY\$DXDD$fA(fE(D\E\fA(A\fWAYDY59fWYXfE(DYfD(D\DXEXDXfA(A\fE(XDXD\\ 7EXDXEXAXAXXA^XD$(^kf(LLf(SATAUHSH轃f.7D$tD$Hf.f({ l$f.{t~%8f(Y7fTf.wnf.r;uHf([]A\Cf(L$L$tyHkH1[]A\HZ H5H8t$fTf.rEtHZ H5H:@UHSHH(dH%(HD$1HGt1ff.Hf(0fT 1f.rff/v1Hk|f.zf/0wy!0HD$yD$f!f.z0tfDH=%\ yHHpitaunextafterintermediate overflow in fsummath.fsum partials-inf + inf in fsum(dd)(di)math domain errormath range errorpowfmodcopysignatan2ldexpdistOO:logremaindercombpermk must not exceed %lldacosacoshasinasinhatanatanhcbrtceildegreeserferfcexp2expm1fabsfactorialfloorfrexpgcdhypotiscloseisfiniteisinfisnanisqrtlcmlgammalog1plog10log2modfradianstruncprodulpstartrel_tolabs_tolmath__ceil____trunc____floor__ .ulp($module, x, /) -- Return the value of the least significant bit of the float x.nextafter($module, x, y, /) -- Return the next floating-point value after x towards y.comb($module, n, k, /) -- Number of ways to choose k items from n items without repetition and without order. Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n. Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial expansion of the expression (1 + x)**n. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.perm($module, n, k=None, /) -- Number of ways to choose k items from n items without repetition and with order. Evaluates to n! / (n - k)! when k <= n and evaluates to zero when k > n. If k is not specified or is None, then k defaults to n and the function returns n!. Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the arguments are negative.prod($module, iterable, /, *, start=1) -- Calculate the product of all the elements in the input iterable. The default start value for the product is 1. When the iterable is empty, return the start value. This function is intended specifically for use with numeric values and may reject non-numeric types.trunc($module, x, /) -- Truncates the Real x to the nearest Integral toward 0. Uses the __trunc__ magic method.tanh($module, x, /) -- Return the hyperbolic tangent of x.tan($module, x, /) -- Return the tangent of x (measured in radians).sqrt($module, x, /) -- Return the square root of x.sinh($module, x, /) -- Return the hyperbolic sine of x.sin($module, x, /) -- Return the sine of x (measured in radians).remainder($module, x, y, /) -- Difference between x and the closest integer multiple of y. Return x - n*y where n*y is the closest integer multiple of y. In the case where x is exactly halfway between two multiples of y, the nearest even value of n is used. The result is always exact.radians($module, x, /) -- Convert angle x from degrees to radians.pow($module, x, y, /) -- Return x**y (x to the power of y).modf($module, x, /) -- Return the fractional and integer parts of x. Both results carry the sign of x and are floats.log2($module, x, /) -- Return the base 2 logarithm of x.log10($module, x, /) -- Return the base 10 logarithm of x.log1p($module, x, /) -- Return the natural logarithm of 1+x (base e). The result is computed in a way which is accurate for x near zero.log(x, [base=math.e]) Return the logarithm of x to the given base. If the base not specified, returns the natural logarithm (base e) of x.lgamma($module, x, /) -- Natural logarithm of absolute value of Gamma function at x.ldexp($module, x, i, /) -- Return x * (2**i). This is essentially the inverse of frexp().lcm($module, *integers) -- Least Common Multiple.isqrt($module, n, /) -- Return the integer part of the square root of the input.isnan($module, x, /) -- Return True if x is a NaN (not a number), and False otherwise.isinf($module, x, /) -- Return True if x is a positive or negative infinity, and False otherwise.isfinite($module, x, /) -- Return True if x is neither an infinity nor a NaN, and False otherwise.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two floating point numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.hypot(*coordinates) -> value Multidimensional Euclidean distance from the origin to a point. Roughly equivalent to: sqrt(sum(x**2 for x in coordinates)) For a two dimensional point (x, y), gives the hypotenuse using the Pythagorean theorem: sqrt(x*x + y*y). For example, the hypotenuse of a 3/4/5 right triangle is: >>> hypot(3.0, 4.0) 5.0 gcd($module, *integers) -- Greatest Common Divisor.gamma($module, x, /) -- Gamma function at x.fsum($module, seq, /) -- Return an accurate floating point sum of values in the iterable seq. Assumes IEEE-754 floating point arithmetic.frexp($module, x, /) -- Return the mantissa and exponent of x, as pair (m, e). m is a float and e is an int, such that x = m * 2.**e. If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.fmod($module, x, y, /) -- Return fmod(x, y), according to platform C. x % y may differ.floor($module, x, /) -- Return the floor of x as an Integral. This is the largest integer <= x.factorial($module, n, /) -- Find n!. Raise a ValueError if x is negative or non-integral.fabs($module, x, /) -- Return the absolute value of the float x.expm1($module, x, /) -- Return exp(x)-1. This function avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small x.exp2($module, x, /) -- Return 2 raised to the power of x.exp($module, x, /) -- Return e raised to the power of x.erfc($module, x, /) -- Complementary error function at x.erf($module, x, /) -- Error function at x.dist($module, p, q, /) -- Return the Euclidean distance between two points p and q. The points should be specified as sequences (or iterables) of coordinates. Both inputs must have the same dimension. Roughly equivalent to: sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))degrees($module, x, /) -- Convert angle x from radians to degrees.cosh($module, x, /) -- Return the hyperbolic cosine of x.cos($module, x, /) -- Return the cosine of x (measured in radians).copysign($module, x, y, /) -- Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns -1.0. ceil($module, x, /) -- Return the ceiling of x as an Integral. This is the smallest integer >= x.cbrt($module, x, /) -- Return the cube root of x.atanh($module, x, /) -- Return the inverse hyperbolic tangent of x.atan2($module, y, x, /) -- Return the arc tangent (measured in radians) of y/x. Unlike atan(y/x), the signs of both x and y are considered.atan($module, x, /) -- Return the arc tangent (measured in radians) of x. The result is between -pi/2 and pi/2.asinh($module, x, /) -- Return the inverse hyperbolic sine of x.asin($module, x, /) -- Return the arc sine (measured in radians) of x. The result is between -pi/2 and pi/2.acosh($module, x, /) -- Return the inverse hyperbolic cosine of x.acos($module, x, /) -- Return the arc cosine (measured in radians) of x. The result is between 0 and pi.This module provides access to the mathematical functions defined by the C standard.x_7a(s(;LXww0uw~Cs+|g!??@@8@^@@@@&AKAAA2A(;L4BuwsBuwB7Bs6Ch0{CZAC Ƶ;(DlYaRwNDFQ([8X=-$244  ""##&&''))**..//112255668899??@@BBCCFFGGIIJJNNOOQQRRUUVVXXYY^^__aabbeeffhhiimmnnppqqttuuwwxxOOO//////wSnj'=)2LJTc@|mRGIQ&IQ&@)藺YiKO~Th%C_L;vye+<RO`.ͪJvʭc3Oc3O>M2)ں0Α0[GI{7U`VFQ-gq @rLX Judf!1Z+J$# ~l6I]f j@{(Pu\ p't:;x,Loۯ,(ՕJ۹D2h5ƢefgUrukFV[J0VE@m #;Uç9 7M039*ݥ;rlˣ T TRI&8?22=gf]}y߂x̑M cG桏֧D^%e~C.py2q]i[Z;m=߷a.!Y m3U2cJMlw} xO/%_p +;88n; 8h(8}6KUF6wqn|7B][P-a#leo"-;; _7a?#3\e&&s+ p1MA|Vԝm&ů.GsOM A~R3#Yoԓ0fXg^j#ݒ[n O Uw}ÍKs1Xθ*Ks1Xθ*_^ҁ[]DqXϕ<JD?΃ޑAǿNȋQ7K9˕y? K_x**!9Ѷ{u$ϻ?GA&<7Qzgݓ;Ct˻^52!C粞P3}y9Y1TmMF$6qāIסr4l!o(NJ>\ [YwXU<.+8yF`275ͭ Ţy Ţy˂%TZP+,[AR1Q~Fմ1ˠ(Wֵa\d*`a5m_Fkڡx89US%۸UN0 tpO%:D2Џ\߀:!ܣ Ϳ{[ @&PuaŒm] -q`@IAcHpCyg_ڷNqӞܧ %cQ Xu\7,`%c`8,'>rv {uJ uEw!0l~y҇%ǥx2k+IB9')8N_k‰yESѷaZ6D{קrA{9ƶg\k׆&PzTa0iV@Q\{K̚I'!+)nqi䀤h9n9aVCY1ˡTpJ+~ӤV :Gtia[VRNLJHGFEDDCCCCAiAApqAAqqiA{DAA@@P@?CQBWLup#B2 B&"B补A?tA*_{ A]v}ALPEA뇇BAX@R;{`Zj@' @isqrt() argument must be nonnegativetolerances must be non-negativeExpected an int as second argument to ldexp.type %.100s doesn't define __trunc__ methodboth points must have the same number of dimensionsfactorial() argument should not exceed %ldfactorial() not defined for negative valuesmath.log requires 1 to 2 argumentsn must be a non-negative integerk must be a non-negative integermin(n - k, k) must not exceed %lld@?-DT! @iW @-DT!@9RFߑ?cܥL@@??#B ;E@HP?7@i@E@-DT! a@?& .>@@A0C8,6V? T꿌(J??-DT!?!3|@-DT!?-DT! @;sBpGPLdXLiLpL$L@M0MPM2N4NO4 Od O O *P$ P Q Qh Q Q Q8 HR qRR|RRRtRxGS[S oSpNTnTxFUW\X`\\d^HPb b i j0 pk| Pl ploqy{P| ` 0,Д,x@8p\pPH x а 8 @ L ` @<`Pdx@0`DXl @`  4H \@p`p@pzRx $>FJ w?:*3$"DC\plD cܞEzRx  G`YH o E zRx  GPxhg ^ E LGFLVH@ E zRx @DG$c(РYEDD0@ AAE zRx 0 Ge CAA hRKBB B(D0D8G@^ 8A0A(B BBBH  8D0A(B BBBP zRx @((GKgJ@ D  E UH h E T A H0U A `$ТOBE B(A0D8DP1 8D0A(B BBBA vJP zRx P(3F>HUOBB D(D0D@ 0A(A BBBA l zRx @(EiHD`:_BE E(D0G8GP 8A0A(B BBBA  E^|UCFEB B(A0A8D`{ 8C0A(B BBBT J 8D0A(B BBBI  8A0A(B BBBE zRx `((E(r 8C0A(B BBBE t0Yli ` E |FF@mH p E SFFH@ A L$YFEB B(A0A8G 8A0A(B BBBA $zRx ,E0<|X_EHI I(R0d(D ABBEzRx 0$nE4$  DFAA Jp  AABA xXBBIpzRx p$D``]FHB B(A0A8Df 8A0A(B BBBA UBBI$zRx ,2E$4 :H0 E d J szRx 0sE Z A ^Hn E y L zRx CEC^H0 G EV A  |D } A <D8< جEAG` EAE  CAA zRx ` D\@ \EAG0 CAA I FAE W EAE 4 ȱ-ADG0~ EAE P CAA hxD)8 l^L 4` ADD0x EAE Y CAA     0 ]{FAA G@8  AABE zRx @$CP IJHd YFBE B(D0A8G 8A0A(B BBBA $zRx , C @ h BDD D0r  EABE s  CABA (0 4%ADG@V AAA zRx @ vB    , 8 D P \, h@ tT h |     ȹ$ ԹRAAB GAAzRx   @BDK4@^yAQ0k DAA AAA4xSAD BABAP zRx  $;@4EDD0A DAA e AAE HH h E m A <ȺH h E g A L\]|FBB B(A0A8JB 8A0A(B BBBL $zRx ,I?~ eH0q G  A ?( 4gHEG j AI z CC zRx   G?L|(h4 FEB B(A0A8D 8A0A(B BBBC >0uFDA DP  AABA zRx P$n? HyH ^ E UhLzH ^ E U,zEG0p FE G CA zRx 0 >H<>FBB B(A0A8GpB 8A0A(B BBBA zRx p(B?Hl=FBE B(A0D8G`^ 8A0A(B BBBA  @ȷGNUp !yٻļ̼U_o /  ! !o`    !P' ooHoono !@/P/`/p/////////00 000@0P0`0p00000000011 101@1P1`1p11111111122 202@2P2`2p22222222233 303@3P3`3p333333333440@Pp` @ж@ Y|`"]*P.0`g 308P@>pCiM\`S XppO YI]P c`k@tW`zOJP` YȻ@v` `p ̻|@{@0fз` pP`ۻֻ'` Լ !!ټ@ !` !cGA$3a1/ math.cpython-311-x86_64-linux-gnu.so-3.11.13-2.el8_10.x86_64.debugO7zXZִF!t//]?Eh=ڊ2Nt:Ah@_A*h';(G"v޻ jm_EKj~0`8K!&`X?jYY*uՈ&ی/ekI.LʤVH,& QhS@<ZQ;Bw6C j.`Ű1 xՓXuJ3qam kQ&m$оJ!K&j.q3wzqX|mB\S<#p2o_~E{hbߜGqw}7$VdFk6'|p|¸ɣi1bs zCCdaq=f۾K>wS΀P M9A lT nhQOi`(r6؊+[VZ6; \ ʍ<}ҡUJyYԳZCQ}1,b|_ܾ4YX݊*j,<|Q(&b؉#, x3>ԶRJ" g(\1Da'@^&5&É͝%A 3SYd12jESx?иQz;CTl|xbJR1a3_qUx5 * YH\4WȐōrėkx4;CTFzbk {SmOYɈ x c|';]ΆY)@Bl7Жbt׎C[`%OP烤6>jDc(6N(X7z~Q* m~E`@MV=Zbp;3-OKl1iAd0 r^šM Io W*ÊuvRփ>7SˣL +B5(]E.J% - nZ~vYWelg!Xs\pdc? 1ei"Ȝ(|0 {qJ $dĺ(xm9v b5N:2Ula7([̃$8Bs[~hճj7}ܖb>;4+%oUvULT=`! GQK¿"? nXShM nK?mQP]"_oFqxR2OobUDtGKVV@U'ʞP_R"IIWDDBYX</w {Ә?3{|NooGW>\Equ`U,Nnt52  {uVLYXzh=R<&\9g:%ER1.~`s=K˕oSgCy!WNYSgsQ#m¾fC4,~"Vͱ#zO,bBWxݔ+ s[VHzBAl=dPG<̟{D/O_ zrDxNnRb"= $ڟ)T۳ ^OO0[oEǩj~:<